...
 
Commits (12)
1ere entree
\ No newline at end of file
test
\ No newline at end of file
# Partie 1
## Sous-partie 1 : texte
Une phrase sans rien
*Une phrase en italique*
**Une phrase en gras**
[Un lien vers fun-mooc.fr](https://www.fun-mooc.fr)
`Une ligne de code`
## Sous-partie 2 : listes
**Liste à puce**
- item
- sous-item
- sous-item
- item
- item
**Liste numérotée**
1. item1
2. item2
3. item3
## Sous-partie 3 : code
```python
# Extrait de code
```
\ No newline at end of file
---
title: "Votre titre"
author: "Votre nom"
date: "La date du jour"
title: "À propos de pi"
author: "Clément Bernard"
date: "21 mai 2025"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
```{r cars}
summary(cars)
```
Et on peut aussi aisément inclure des figures. Par exemple:
```{r pressure, echo=FALSE}
plot(pressure)
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars}
pi
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r}
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
4*mean(df$Accept)
```
\ No newline at end of file
......@@ -5,29 +5,19 @@ date: "La date du jour"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
```{r cars}
summary(cars)
```{r données}
data <- c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)
```
Et on peut aussi aisément inclure des figures. Par exemple:
```{r pressure, echo=FALSE}
plot(pressure)
```{r questions}
print(mean(data))
print(min(data))
print(max(data))
print(median(data))
print(sd(data))
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
......@@ -10,24 +10,14 @@ output: html_document
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
```{r cars}
summary(cars)
```{r data}
data <- c(14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0)
```
Et on peut aussi aisément inclure des figures. Par exemple:
```{r pressure, echo=FALSE}
plot(pressure)
```{r sequence plot}
plot(data,type='l')
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
```{r histogramme}
hist(data)
```
\ No newline at end of file
......@@ -6,28 +6,4 @@ output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
```{r cars}
summary(cars)
```
Et on peut aussi aisément inclure des figures. Par exemple:
```{r pressure, echo=FALSE}
plot(pressure)
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
......@@ -122,3 +122,5 @@ fiasco, l'analyse précédente comporte (au moins) un petit
problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette
analyse et de regarder ce jeu de données sous tous les angles afin
d'expliquer ce qui ne va pas.
#aucune données pour des température très basses
......@@ -25,6 +25,14 @@ Les données de l'incidence du syndrome grippal sont disponibles du site Web du
```{r}
data_url = "http://www.sentiweb.fr/datasets/incidence-PAY-3.csv"
```
Sauvegarde des données
```{r}
data_file = "syndrome-grippal.csv"
if (!file.exists(data_file)) {
download.file(data_url, data_file, method="auto")
}
```
Voici l'explication des colonnes donnée sur le [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):
......