final changes

parent 0699f9b4
...@@ -4,7 +4,13 @@ ...@@ -4,7 +4,13 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# On the computation of $\\pi$\n", "# On the computation of $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Asking the maths library\n", "## Asking the maths library\n",
"My computer tells me that $\\pi$ is *approximatively*" "My computer tells me that $\\pi$ is *approximatively*"
] ]
...@@ -32,7 +38,7 @@ ...@@ -32,7 +38,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Buffon's needle\n", "## Buffon's needle\n",
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the _approximation_"
] ]
}, },
{ {
...@@ -65,7 +71,7 @@ ...@@ -65,7 +71,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Using a surface fraction argument\n", "## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of thesin function is based on thefact that if $X \\sim U(0,1)$ and $Y \\sim U(0,1)$, then $P[X^2 + Y^2 \\leq 1] = \\frac{\\pi}{4}$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method). The following code uses this approach:" "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
] ]
}, },
{ {
...@@ -87,17 +93,18 @@ ...@@ -87,17 +93,18 @@
} }
], ],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline \n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n", "\n",
"np.random.seed(seed=42)\n", "np.random.seed(seed=42)\n",
"N=1000\n", "N = 1000\n",
"x=np.random.uniform(size=N, low=0, high=1)\n", "x = np.random.uniform(size=N, low=0, high=1)\n",
"y=np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n",
"accept=(x*x+y*y)<=1\n", "\n",
"reject=np.logical_not(accept)\n", "accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n", "\n",
"fig, ax=plt.subplots(1)\n", "fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')" "ax.set_aspect('equal')"
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment