Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
816bdcd4f135ba867ea1a345d547c4c2
mooc-rr
Commits
1fd389fb
Commit
1fd389fb
authored
Apr 26, 2025
by
816bdcd4f135ba867ea1a345d547c4c2
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
COPY PASTED
parent
e391755a
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
50 additions
and
3 deletions
+50
-3
toy_notebook_fr.ipynb
module2/exo1/toy_notebook_fr.ipynb
+50
-3
No files found.
module2/exo1/toy_notebook_fr.ipynb
View file @
1fd389fb
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"toy_notebook_fr\n",
"March 28, 2019\n",
"1 À propos du calcul de π\n",
"1.1 En demandant à la lib maths\n",
"Mon ordinateur m’indique que π vaut approximativement\n",
"In [1]: from math import *\n",
"print(pi)\n",
"3.141592653589793\n",
"1.2 En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :\n",
"In [2]: import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)\n",
"Out[2]: 3.1289111389236548\n",
"1.3 Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P[X2 + Y2 ≤ 1] = π/4 (voir\n",
"méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :\n",
"In [3]: %matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"1\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')\n",
"Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois,\n",
"en moyenne, X2 + Y2 est inférieur à 1 :\n",
"In [4]: 4*np.mean(accept)\n",
"Out[4]: 3.1120000000000001\n",
"2"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
...
...
@@ -16,10 +64,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.
3
"
"version": "3.6.
4
"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment