Commit 96b59faf authored by 86d75cb97b42c802cd17c5fafed6edb8's avatar 86d75cb97b42c802cd17c5fafed6edb8

part1

parents 2fdc5847 ff5bf62e
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
<<<<<<< HEAD
"# On the computation of $\\pi$" "# On the computation of $\\pi$"
] ]
}, },
...@@ -13,6 +14,11 @@ ...@@ -13,6 +14,11 @@
"source": [ "source": [
"## Asking the maths library\n", "## Asking the maths library\n",
"My computer tells me that $\\pi$ is *approximatively*" "My computer tells me that $\\pi$ is *approximatively*"
=======
"# À propos du calcul de $\\pi$\n",
"## En demandant à la lib maths\n",
"Mon ordinateur m’indique que $\\pi$ vaut *approximativement*"
>>>>>>> ff5bf62e6a54b420ff906287a58051154df436c2
] ]
}, },
{ {
...@@ -37,8 +43,13 @@ ...@@ -37,8 +43,13 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
<<<<<<< HEAD
"## Buffon's needle\n", "## Buffon's needle\n",
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__\n" "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__\n"
=======
"## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la **méthode** [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :\n"
>>>>>>> ff5bf62e6a54b420ff906287a58051154df436c2
] ]
}, },
{ {
...@@ -70,8 +81,15 @@ ...@@ -70,8 +81,15 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
<<<<<<< HEAD
"## Using a surface fraction argument\n", "## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:\n" "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:\n"
=======
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0, 1)$ alors $P[X^2 + Y^2 ≤ 1] = \\pi/4$\n",
"(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :\n"
>>>>>>> ff5bf62e6a54b420ff906287a58051154df436c2
] ]
}, },
{ {
...@@ -114,7 +132,12 @@ ...@@ -114,7 +132,12 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
<<<<<<< HEAD
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:"
=======
"Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n",
"en moyenne, $X^2 + Y^2$ est inférieur à 1 :"
>>>>>>> ff5bf62e6a54b420ff906287a58051154df436c2
] ]
}, },
{ {
......
...@@ -23,3 +23,6 @@ ...@@ -23,3 +23,6 @@
"nbformat_minor": 2 "nbformat_minor": 2
} }
# À propos du calcul de $\pi$
## En demandant à la lib maths
Mon ordinateur m’indique que $\pi$ vaut *approximativement*
{ {
"cells": [], "cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"a = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"std = np.std(a, axis=None, dtype=None, out=None, ddof=1)\n",
"mini = min(a)\n",
"maxi = max(a)\n",
"med = np.median(a)\n",
"mean = np.mean(a)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4.334094455301447"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"std"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2.8"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mini"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"23.4"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"maxi"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.5"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"med"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"14.113000000000001"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
...@@ -16,10 +155,9 @@ ...@@ -16,10 +155,9 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.3" "version": "3.6.4"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment