"My computer tells me that $\\pi$ is *approximatively*"
"My computer tells me that $\\pi$ is *approximatively*"
...
@@ -39,7 +41,9 @@
...
@@ -39,7 +41,9 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hidePrompt": false
},
"source": [
"source": [
"## Buffon's needle\n",
"## Buffon's needle\n",
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
...
@@ -64,7 +68,7 @@
...
@@ -64,7 +68,7 @@
"metadata": {
"metadata": {
"hideCode": false,
"hideCode": false,
"hidePrompt": false,
"hidePrompt": false,
"scrolled": true},
},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
],
],
...
@@ -79,7 +83,9 @@
...
@@ -79,7 +83,9 @@
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false
},
"source": [
"source": [
"## Using a surface fraction argument\n",
"## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
"A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"