Update toy_notebook_en.ipynb

parent f3f385ac
......@@ -9,7 +9,9 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false
},
"source": [
"## Asking the maths library\n",
"My computer tells me that $\\pi$ is *approximatively*"
......@@ -39,7 +41,9 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hidePrompt": false
},
"source": [
"## Buffon's needle\n",
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
......@@ -64,7 +68,7 @@
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true},
},
"output_type": "execute_result"
}
],
......@@ -79,7 +83,9 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false
},
"source": [
"## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
......@@ -88,11 +94,7 @@
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"metadata": {},
"outputs": [
{
"data": {
......@@ -135,10 +137,7 @@
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true},
"metadata": {},
"outputs": [
{
"data": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment