feat : adding data for whole China

parent ca91232d
...@@ -45,7 +45,7 @@ ...@@ -45,7 +45,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -59,7 +59,7 @@ ...@@ -59,7 +59,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -69,7 +69,7 @@ ...@@ -69,7 +69,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 19, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -1849,7 +1849,7 @@ ...@@ -1849,7 +1849,7 @@
"[266 rows x 132 columns]" "[266 rows x 132 columns]"
] ]
}, },
"execution_count": 19, "execution_count": 3,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -1893,7 +1893,8 @@ ...@@ -1893,7 +1893,8 @@
"Cependant, nous ne sommes pas dépendant de ces données, seul les données relatives au pays suivant nous intéresse. \n", "Cependant, nous ne sommes pas dépendant de ces données, seul les données relatives au pays suivant nous intéresse. \n",
"\n", "\n",
"* Belgique \n", "* Belgique \n",
"* Chine - toutes les provinces sauf Hong-Kong (China), Hong Kong (China, Hong-Kong)\n", "* Chine - toutes les provinces sauf Hong-Kong (China),\n",
"* Hong Kong \n",
"* France métropolitaine\n", "* France métropolitaine\n",
"* Allemagne\n", "* Allemagne\n",
"* Iran\n", "* Iran\n",
...@@ -1915,7 +1916,7 @@ ...@@ -1915,7 +1916,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 34, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -2005,7 +2006,7 @@ ...@@ -2005,7 +2006,7 @@
"[1 rows x 132 columns]" "[1 rows x 132 columns]"
] ]
}, },
"execution_count": 34, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -2020,7 +2021,7 @@ ...@@ -2020,7 +2021,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 35, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -2137,7 +2138,7 @@ ...@@ -2137,7 +2138,7 @@
"[2 rows x 132 columns]" "[2 rows x 132 columns]"
] ]
}, },
"execution_count": 35, "execution_count": 5,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -2157,6 +2158,1438 @@ ...@@ -2157,6 +2158,1438 @@
"source": [ "source": [
"Les mêmes étapes sont utilisées pour le reste des pays manquants, sauf pour la Chine qui nécessite une opération spécial. (Voir ci-dessous)" "Les mêmes étapes sont utilisées pour le reste des pays manquants, sauf pour la Chine qui nécessite une opération spécial. (Voir ci-dessous)"
] ]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Province/State</th>\n",
" <th>Country/Region</th>\n",
" <th>Lat</th>\n",
" <th>Long</th>\n",
" <th>1/22/20</th>\n",
" <th>1/23/20</th>\n",
" <th>1/24/20</th>\n",
" <th>1/25/20</th>\n",
" <th>1/26/20</th>\n",
" <th>1/27/20</th>\n",
" <th>...</th>\n",
" <th>5/19/20</th>\n",
" <th>5/20/20</th>\n",
" <th>5/21/20</th>\n",
" <th>5/22/20</th>\n",
" <th>5/23/20</th>\n",
" <th>5/24/20</th>\n",
" <th>5/25/20</th>\n",
" <th>5/26/20</th>\n",
" <th>5/27/20</th>\n",
" <th>5/28/20</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>NaN</td>\n",
" <td>Belgium</td>\n",
" <td>50.8333</td>\n",
" <td>4.0000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>55791</td>\n",
" <td>55983</td>\n",
" <td>56235</td>\n",
" <td>56511</td>\n",
" <td>56810</td>\n",
" <td>57092</td>\n",
" <td>57342</td>\n",
" <td>57455</td>\n",
" <td>57592</td>\n",
" <td>57849</td>\n",
" </tr>\n",
" <tr>\n",
" <th>116</th>\n",
" <td>NaN</td>\n",
" <td>France</td>\n",
" <td>46.2276</td>\n",
" <td>2.2137</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>...</td>\n",
" <td>178428</td>\n",
" <td>179069</td>\n",
" <td>179306</td>\n",
" <td>179645</td>\n",
" <td>179964</td>\n",
" <td>179859</td>\n",
" <td>180166</td>\n",
" <td>179887</td>\n",
" <td>180044</td>\n",
" <td>183309</td>\n",
" </tr>\n",
" <tr>\n",
" <th>120</th>\n",
" <td>NaN</td>\n",
" <td>Germany</td>\n",
" <td>51.0000</td>\n",
" <td>9.0000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>...</td>\n",
" <td>177778</td>\n",
" <td>178473</td>\n",
" <td>179021</td>\n",
" <td>179710</td>\n",
" <td>179986</td>\n",
" <td>180328</td>\n",
" <td>180600</td>\n",
" <td>181200</td>\n",
" <td>181524</td>\n",
" <td>182196</td>\n",
" </tr>\n",
" <tr>\n",
" <th>133</th>\n",
" <td>NaN</td>\n",
" <td>Iran</td>\n",
" <td>32.0000</td>\n",
" <td>53.0000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>124603</td>\n",
" <td>126949</td>\n",
" <td>129341</td>\n",
" <td>131652</td>\n",
" <td>133521</td>\n",
" <td>135701</td>\n",
" <td>137724</td>\n",
" <td>139511</td>\n",
" <td>141591</td>\n",
" <td>143849</td>\n",
" </tr>\n",
" <tr>\n",
" <th>137</th>\n",
" <td>NaN</td>\n",
" <td>Italy</td>\n",
" <td>43.0000</td>\n",
" <td>12.0000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>226699</td>\n",
" <td>227364</td>\n",
" <td>228006</td>\n",
" <td>228658</td>\n",
" <td>229327</td>\n",
" <td>229858</td>\n",
" <td>230158</td>\n",
" <td>230555</td>\n",
" <td>231139</td>\n",
" <td>231732</td>\n",
" </tr>\n",
" <tr>\n",
" <th>139</th>\n",
" <td>NaN</td>\n",
" <td>Japan</td>\n",
" <td>36.0000</td>\n",
" <td>138.0000</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>4</td>\n",
" <td>...</td>\n",
" <td>16367</td>\n",
" <td>16367</td>\n",
" <td>16424</td>\n",
" <td>16513</td>\n",
" <td>16536</td>\n",
" <td>16550</td>\n",
" <td>16581</td>\n",
" <td>16623</td>\n",
" <td>16651</td>\n",
" <td>16598</td>\n",
" </tr>\n",
" <tr>\n",
" <th>143</th>\n",
" <td>NaN</td>\n",
" <td>Korea, South</td>\n",
" <td>36.0000</td>\n",
" <td>128.0000</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>...</td>\n",
" <td>11110</td>\n",
" <td>11122</td>\n",
" <td>11142</td>\n",
" <td>11165</td>\n",
" <td>11190</td>\n",
" <td>11206</td>\n",
" <td>11225</td>\n",
" <td>11265</td>\n",
" <td>11344</td>\n",
" <td>11402</td>\n",
" </tr>\n",
" <tr>\n",
" <th>169</th>\n",
" <td>NaN</td>\n",
" <td>Netherlands</td>\n",
" <td>52.1326</td>\n",
" <td>5.2913</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>44249</td>\n",
" <td>44447</td>\n",
" <td>44700</td>\n",
" <td>44888</td>\n",
" <td>45064</td>\n",
" <td>45236</td>\n",
" <td>45445</td>\n",
" <td>45578</td>\n",
" <td>45768</td>\n",
" <td>45950</td>\n",
" </tr>\n",
" <tr>\n",
" <th>184</th>\n",
" <td>NaN</td>\n",
" <td>Portugal</td>\n",
" <td>39.3999</td>\n",
" <td>-8.2245</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>29432</td>\n",
" <td>29660</td>\n",
" <td>29912</td>\n",
" <td>30200</td>\n",
" <td>30471</td>\n",
" <td>30623</td>\n",
" <td>30788</td>\n",
" <td>31007</td>\n",
" <td>31292</td>\n",
" <td>31596</td>\n",
" </tr>\n",
" <tr>\n",
" <th>201</th>\n",
" <td>NaN</td>\n",
" <td>Spain</td>\n",
" <td>40.0000</td>\n",
" <td>-4.0000</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>232037</td>\n",
" <td>232555</td>\n",
" <td>233037</td>\n",
" <td>234824</td>\n",
" <td>235290</td>\n",
" <td>235772</td>\n",
" <td>235400</td>\n",
" <td>236259</td>\n",
" <td>236259</td>\n",
" <td>237906</td>\n",
" </tr>\n",
" <tr>\n",
" <th>223</th>\n",
" <td>NaN</td>\n",
" <td>United Kingdom</td>\n",
" <td>55.3781</td>\n",
" <td>-3.4360</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>248818</td>\n",
" <td>248293</td>\n",
" <td>250908</td>\n",
" <td>254195</td>\n",
" <td>257154</td>\n",
" <td>259559</td>\n",
" <td>261184</td>\n",
" <td>265227</td>\n",
" <td>267240</td>\n",
" <td>269127</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>NaN</td>\n",
" <td>US</td>\n",
" <td>37.0902</td>\n",
" <td>-95.7129</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>...</td>\n",
" <td>1528568</td>\n",
" <td>1551853</td>\n",
" <td>1577147</td>\n",
" <td>1600937</td>\n",
" <td>1622612</td>\n",
" <td>1643246</td>\n",
" <td>1662302</td>\n",
" <td>1680913</td>\n",
" <td>1699176</td>\n",
" <td>1721753</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>12 rows × 132 columns</p>\n",
"</div>"
],
"text/plain": [
" Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n",
"23 NaN Belgium 50.8333 4.0000 0 0 \n",
"116 NaN France 46.2276 2.2137 0 0 \n",
"120 NaN Germany 51.0000 9.0000 0 0 \n",
"133 NaN Iran 32.0000 53.0000 0 0 \n",
"137 NaN Italy 43.0000 12.0000 0 0 \n",
"139 NaN Japan 36.0000 138.0000 2 2 \n",
"143 NaN Korea, South 36.0000 128.0000 1 1 \n",
"169 NaN Netherlands 52.1326 5.2913 0 0 \n",
"184 NaN Portugal 39.3999 -8.2245 0 0 \n",
"201 NaN Spain 40.0000 -4.0000 0 0 \n",
"223 NaN United Kingdom 55.3781 -3.4360 0 0 \n",
"225 NaN US 37.0902 -95.7129 1 1 \n",
"\n",
" 1/24/20 1/25/20 1/26/20 1/27/20 ... 5/19/20 5/20/20 5/21/20 \\\n",
"23 0 0 0 0 ... 55791 55983 56235 \n",
"116 2 3 3 3 ... 178428 179069 179306 \n",
"120 0 0 0 1 ... 177778 178473 179021 \n",
"133 0 0 0 0 ... 124603 126949 129341 \n",
"137 0 0 0 0 ... 226699 227364 228006 \n",
"139 2 2 4 4 ... 16367 16367 16424 \n",
"143 2 2 3 4 ... 11110 11122 11142 \n",
"169 0 0 0 0 ... 44249 44447 44700 \n",
"184 0 0 0 0 ... 29432 29660 29912 \n",
"201 0 0 0 0 ... 232037 232555 233037 \n",
"223 0 0 0 0 ... 248818 248293 250908 \n",
"225 2 2 5 5 ... 1528568 1551853 1577147 \n",
"\n",
" 5/22/20 5/23/20 5/24/20 5/25/20 5/26/20 5/27/20 5/28/20 \n",
"23 56511 56810 57092 57342 57455 57592 57849 \n",
"116 179645 179964 179859 180166 179887 180044 183309 \n",
"120 179710 179986 180328 180600 181200 181524 182196 \n",
"133 131652 133521 135701 137724 139511 141591 143849 \n",
"137 228658 229327 229858 230158 230555 231139 231732 \n",
"139 16513 16536 16550 16581 16623 16651 16598 \n",
"143 11165 11190 11206 11225 11265 11344 11402 \n",
"169 44888 45064 45236 45445 45578 45768 45950 \n",
"184 30200 30471 30623 30788 31007 31292 31596 \n",
"201 234824 235290 235772 235400 236259 236259 237906 \n",
"223 254195 257154 259559 261184 265227 267240 269127 \n",
"225 1600937 1622612 1643246 1662302 1680913 1699176 1721753 \n",
"\n",
"[12 rows x 132 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"countries_list= list(['China, Hong-Kong', 'Germany', 'Iran', 'Italy', 'Japan', 'Korea, South', 'Netherlands', 'Portugal', 'Spain', 'United Kingdom', 'US'])\n",
"#print(countries_list)\n",
"\n",
"for country in countries_list : \n",
" dataCountries = dataCountries.append(raw_data.loc[(raw_data['Country/Region'] == country) & (raw_data['Province/State'].isnull())])\n",
"\n",
"dataCountries"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"TODO explain"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Province/State</th>\n",
" <th>Country/Region</th>\n",
" <th>Lat</th>\n",
" <th>Long</th>\n",
" <th>1/22/20</th>\n",
" <th>1/23/20</th>\n",
" <th>1/24/20</th>\n",
" <th>1/25/20</th>\n",
" <th>1/26/20</th>\n",
" <th>1/27/20</th>\n",
" <th>...</th>\n",
" <th>5/19/20</th>\n",
" <th>5/20/20</th>\n",
" <th>5/21/20</th>\n",
" <th>5/22/20</th>\n",
" <th>5/23/20</th>\n",
" <th>5/24/20</th>\n",
" <th>5/25/20</th>\n",
" <th>5/26/20</th>\n",
" <th>5/27/20</th>\n",
" <th>5/28/20</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>Anhui</td>\n",
" <td>China</td>\n",
" <td>31.8257</td>\n",
" <td>117.2264</td>\n",
" <td>1.0</td>\n",
" <td>9.0</td>\n",
" <td>15.0</td>\n",
" <td>39.0</td>\n",
" <td>60.0</td>\n",
" <td>70.0</td>\n",
" <td>...</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" <td>991.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>Beijing</td>\n",
" <td>China</td>\n",
" <td>40.1824</td>\n",
" <td>116.4142</td>\n",
" <td>14.0</td>\n",
" <td>22.0</td>\n",
" <td>36.0</td>\n",
" <td>41.0</td>\n",
" <td>68.0</td>\n",
" <td>80.0</td>\n",
" <td>...</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" <td>593.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>Chongqing</td>\n",
" <td>China</td>\n",
" <td>30.0572</td>\n",
" <td>107.8740</td>\n",
" <td>6.0</td>\n",
" <td>9.0</td>\n",
" <td>27.0</td>\n",
" <td>57.0</td>\n",
" <td>75.0</td>\n",
" <td>110.0</td>\n",
" <td>...</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" <td>579.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>Fujian</td>\n",
" <td>China</td>\n",
" <td>26.0789</td>\n",
" <td>117.9874</td>\n",
" <td>1.0</td>\n",
" <td>5.0</td>\n",
" <td>10.0</td>\n",
" <td>18.0</td>\n",
" <td>35.0</td>\n",
" <td>59.0</td>\n",
" <td>...</td>\n",
" <td>356.0</td>\n",
" <td>356.0</td>\n",
" <td>356.0</td>\n",
" <td>356.0</td>\n",
" <td>356.0</td>\n",
" <td>356.0</td>\n",
" <td>357.0</td>\n",
" <td>357.0</td>\n",
" <td>358.0</td>\n",
" <td>358.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>Gansu</td>\n",
" <td>China</td>\n",
" <td>37.8099</td>\n",
" <td>101.0583</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" <td>4.0</td>\n",
" <td>7.0</td>\n",
" <td>14.0</td>\n",
" <td>...</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" <td>139.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>Guangdong</td>\n",
" <td>China</td>\n",
" <td>23.3417</td>\n",
" <td>113.4244</td>\n",
" <td>26.0</td>\n",
" <td>32.0</td>\n",
" <td>53.0</td>\n",
" <td>78.0</td>\n",
" <td>111.0</td>\n",
" <td>151.0</td>\n",
" <td>...</td>\n",
" <td>1590.0</td>\n",
" <td>1590.0</td>\n",
" <td>1590.0</td>\n",
" <td>1591.0</td>\n",
" <td>1592.0</td>\n",
" <td>1592.0</td>\n",
" <td>1592.0</td>\n",
" <td>1592.0</td>\n",
" <td>1592.0</td>\n",
" <td>1592.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>Guangxi</td>\n",
" <td>China</td>\n",
" <td>23.8298</td>\n",
" <td>108.7881</td>\n",
" <td>2.0</td>\n",
" <td>5.0</td>\n",
" <td>23.0</td>\n",
" <td>23.0</td>\n",
" <td>36.0</td>\n",
" <td>46.0</td>\n",
" <td>...</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" <td>254.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>Guizhou</td>\n",
" <td>China</td>\n",
" <td>26.8154</td>\n",
" <td>106.8748</td>\n",
" <td>1.0</td>\n",
" <td>3.0</td>\n",
" <td>3.0</td>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>7.0</td>\n",
" <td>...</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" <td>147.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>Hainan</td>\n",
" <td>China</td>\n",
" <td>19.1959</td>\n",
" <td>109.7453</td>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>8.0</td>\n",
" <td>19.0</td>\n",
" <td>22.0</td>\n",
" <td>33.0</td>\n",
" <td>...</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" <td>169.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td>Hebei</td>\n",
" <td>China</td>\n",
" <td>39.5490</td>\n",
" <td>116.1306</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>8.0</td>\n",
" <td>13.0</td>\n",
" <td>18.0</td>\n",
" <td>...</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" <td>328.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>Heilongjiang</td>\n",
" <td>China</td>\n",
" <td>47.8620</td>\n",
" <td>127.7615</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>4.0</td>\n",
" <td>9.0</td>\n",
" <td>15.0</td>\n",
" <td>21.0</td>\n",
" <td>...</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" <td>945.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>Henan</td>\n",
" <td>China</td>\n",
" <td>33.8820</td>\n",
" <td>113.6140</td>\n",
" <td>5.0</td>\n",
" <td>5.0</td>\n",
" <td>9.0</td>\n",
" <td>32.0</td>\n",
" <td>83.0</td>\n",
" <td>128.0</td>\n",
" <td>...</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" <td>1276.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61</th>\n",
" <td>Hong Kong</td>\n",
" <td>China</td>\n",
" <td>22.3000</td>\n",
" <td>114.2000</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" <td>5.0</td>\n",
" <td>8.0</td>\n",
" <td>8.0</td>\n",
" <td>...</td>\n",
" <td>1055.0</td>\n",
" <td>1055.0</td>\n",
" <td>1055.0</td>\n",
" <td>1065.0</td>\n",
" <td>1065.0</td>\n",
" <td>1065.0</td>\n",
" <td>1065.0</td>\n",
" <td>1065.0</td>\n",
" <td>1066.0</td>\n",
" <td>1066.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>62</th>\n",
" <td>Hubei</td>\n",
" <td>China</td>\n",
" <td>30.9756</td>\n",
" <td>112.2707</td>\n",
" <td>444.0</td>\n",
" <td>444.0</td>\n",
" <td>549.0</td>\n",
" <td>761.0</td>\n",
" <td>1058.0</td>\n",
" <td>1423.0</td>\n",
" <td>...</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" <td>68135.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>63</th>\n",
" <td>Hunan</td>\n",
" <td>China</td>\n",
" <td>27.6104</td>\n",
" <td>111.7088</td>\n",
" <td>4.0</td>\n",
" <td>9.0</td>\n",
" <td>24.0</td>\n",
" <td>43.0</td>\n",
" <td>69.0</td>\n",
" <td>100.0</td>\n",
" <td>...</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" <td>1019.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>64</th>\n",
" <td>Inner Mongolia</td>\n",
" <td>China</td>\n",
" <td>44.0935</td>\n",
" <td>113.9448</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>7.0</td>\n",
" <td>7.0</td>\n",
" <td>11.0</td>\n",
" <td>...</td>\n",
" <td>216.0</td>\n",
" <td>216.0</td>\n",
" <td>216.0</td>\n",
" <td>217.0</td>\n",
" <td>217.0</td>\n",
" <td>227.0</td>\n",
" <td>232.0</td>\n",
" <td>232.0</td>\n",
" <td>232.0</td>\n",
" <td>232.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>65</th>\n",
" <td>Jiangsu</td>\n",
" <td>China</td>\n",
" <td>32.9711</td>\n",
" <td>119.4550</td>\n",
" <td>1.0</td>\n",
" <td>5.0</td>\n",
" <td>9.0</td>\n",
" <td>18.0</td>\n",
" <td>33.0</td>\n",
" <td>47.0</td>\n",
" <td>...</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" <td>653.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66</th>\n",
" <td>Jiangxi</td>\n",
" <td>China</td>\n",
" <td>27.6140</td>\n",
" <td>115.7221</td>\n",
" <td>2.0</td>\n",
" <td>7.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>36.0</td>\n",
" <td>72.0</td>\n",
" <td>...</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" <td>937.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67</th>\n",
" <td>Jilin</td>\n",
" <td>China</td>\n",
" <td>43.6661</td>\n",
" <td>126.1923</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>3.0</td>\n",
" <td>4.0</td>\n",
" <td>4.0</td>\n",
" <td>6.0</td>\n",
" <td>...</td>\n",
" <td>151.0</td>\n",
" <td>151.0</td>\n",
" <td>151.0</td>\n",
" <td>154.0</td>\n",
" <td>155.0</td>\n",
" <td>155.0</td>\n",
" <td>155.0</td>\n",
" <td>155.0</td>\n",
" <td>155.0</td>\n",
" <td>155.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>68</th>\n",
" <td>Liaoning</td>\n",
" <td>China</td>\n",
" <td>41.2956</td>\n",
" <td>122.6085</td>\n",
" <td>2.0</td>\n",
" <td>3.0</td>\n",
" <td>4.0</td>\n",
" <td>17.0</td>\n",
" <td>21.0</td>\n",
" <td>27.0</td>\n",
" <td>...</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" <td>149.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>69</th>\n",
" <td>Macau</td>\n",
" <td>China</td>\n",
" <td>22.1667</td>\n",
" <td>113.5500</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" <td>5.0</td>\n",
" <td>6.0</td>\n",
" <td>...</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" <td>45.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>70</th>\n",
" <td>Ningxia</td>\n",
" <td>China</td>\n",
" <td>37.2692</td>\n",
" <td>106.1655</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>3.0</td>\n",
" <td>4.0</td>\n",
" <td>7.0</td>\n",
" <td>...</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" <td>75.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>71</th>\n",
" <td>Qinghai</td>\n",
" <td>China</td>\n",
" <td>35.7452</td>\n",
" <td>95.9956</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>6.0</td>\n",
" <td>...</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" <td>18.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>Shaanxi</td>\n",
" <td>China</td>\n",
" <td>35.1917</td>\n",
" <td>108.8701</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>5.0</td>\n",
" <td>15.0</td>\n",
" <td>22.0</td>\n",
" <td>35.0</td>\n",
" <td>...</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" <td>308.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>73</th>\n",
" <td>Shandong</td>\n",
" <td>China</td>\n",
" <td>36.3427</td>\n",
" <td>118.1498</td>\n",
" <td>2.0</td>\n",
" <td>6.0</td>\n",
" <td>15.0</td>\n",
" <td>27.0</td>\n",
" <td>46.0</td>\n",
" <td>75.0</td>\n",
" <td>...</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" <td>788.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>74</th>\n",
" <td>Shanghai</td>\n",
" <td>China</td>\n",
" <td>31.2020</td>\n",
" <td>121.4491</td>\n",
" <td>9.0</td>\n",
" <td>16.0</td>\n",
" <td>20.0</td>\n",
" <td>33.0</td>\n",
" <td>40.0</td>\n",
" <td>53.0</td>\n",
" <td>...</td>\n",
" <td>666.0</td>\n",
" <td>666.0</td>\n",
" <td>666.0</td>\n",
" <td>667.0</td>\n",
" <td>668.0</td>\n",
" <td>668.0</td>\n",
" <td>669.0</td>\n",
" <td>670.0</td>\n",
" <td>671.0</td>\n",
" <td>671.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75</th>\n",
" <td>Shanxi</td>\n",
" <td>China</td>\n",
" <td>37.5777</td>\n",
" <td>112.2922</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>6.0</td>\n",
" <td>9.0</td>\n",
" <td>13.0</td>\n",
" <td>...</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" <td>198.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>76</th>\n",
" <td>Sichuan</td>\n",
" <td>China</td>\n",
" <td>30.6171</td>\n",
" <td>102.7103</td>\n",
" <td>5.0</td>\n",
" <td>8.0</td>\n",
" <td>15.0</td>\n",
" <td>28.0</td>\n",
" <td>44.0</td>\n",
" <td>69.0</td>\n",
" <td>...</td>\n",
" <td>561.0</td>\n",
" <td>561.0</td>\n",
" <td>561.0</td>\n",
" <td>563.0</td>\n",
" <td>563.0</td>\n",
" <td>564.0</td>\n",
" <td>564.0</td>\n",
" <td>564.0</td>\n",
" <td>564.0</td>\n",
" <td>564.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>77</th>\n",
" <td>Tianjin</td>\n",
" <td>China</td>\n",
" <td>39.3054</td>\n",
" <td>117.3230</td>\n",
" <td>4.0</td>\n",
" <td>4.0</td>\n",
" <td>8.0</td>\n",
" <td>10.0</td>\n",
" <td>14.0</td>\n",
" <td>23.0</td>\n",
" <td>...</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" <td>192.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78</th>\n",
" <td>Tibet</td>\n",
" <td>China</td>\n",
" <td>31.6927</td>\n",
" <td>88.0924</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>Xinjiang</td>\n",
" <td>China</td>\n",
" <td>41.1129</td>\n",
" <td>85.2401</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" <td>3.0</td>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>...</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" <td>76.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>80</th>\n",
" <td>Yunnan</td>\n",
" <td>China</td>\n",
" <td>24.9740</td>\n",
" <td>101.4870</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>5.0</td>\n",
" <td>11.0</td>\n",
" <td>16.0</td>\n",
" <td>26.0</td>\n",
" <td>...</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" <td>185.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>81</th>\n",
" <td>Zhejiang</td>\n",
" <td>China</td>\n",
" <td>29.1832</td>\n",
" <td>120.0934</td>\n",
" <td>10.0</td>\n",
" <td>27.0</td>\n",
" <td>43.0</td>\n",
" <td>62.0</td>\n",
" <td>104.0</td>\n",
" <td>128.0</td>\n",
" <td>...</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" <td>1268.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>China</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>548.0</td>\n",
" <td>643.0</td>\n",
" <td>920.0</td>\n",
" <td>1406.0</td>\n",
" <td>2075.0</td>\n",
" <td>2877.0</td>\n",
" <td>...</td>\n",
" <td>84063.0</td>\n",
" <td>84063.0</td>\n",
" <td>84063.0</td>\n",
" <td>84081.0</td>\n",
" <td>84084.0</td>\n",
" <td>84095.0</td>\n",
" <td>84102.0</td>\n",
" <td>84103.0</td>\n",
" <td>84106.0</td>\n",
" <td>84106.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>34 rows × 132 columns</p>\n",
"</div>"
],
"text/plain": [
" Province/State Country/Region Lat Long 1/22/20 1/23/20 \\\n",
"49 Anhui China 31.8257 117.2264 1.0 9.0 \n",
"50 Beijing China 40.1824 116.4142 14.0 22.0 \n",
"51 Chongqing China 30.0572 107.8740 6.0 9.0 \n",
"52 Fujian China 26.0789 117.9874 1.0 5.0 \n",
"53 Gansu China 37.8099 101.0583 0.0 2.0 \n",
"54 Guangdong China 23.3417 113.4244 26.0 32.0 \n",
"55 Guangxi China 23.8298 108.7881 2.0 5.0 \n",
"56 Guizhou China 26.8154 106.8748 1.0 3.0 \n",
"57 Hainan China 19.1959 109.7453 4.0 5.0 \n",
"58 Hebei China 39.5490 116.1306 1.0 1.0 \n",
"59 Heilongjiang China 47.8620 127.7615 0.0 2.0 \n",
"60 Henan China 33.8820 113.6140 5.0 5.0 \n",
"61 Hong Kong China 22.3000 114.2000 0.0 2.0 \n",
"62 Hubei China 30.9756 112.2707 444.0 444.0 \n",
"63 Hunan China 27.6104 111.7088 4.0 9.0 \n",
"64 Inner Mongolia China 44.0935 113.9448 0.0 0.0 \n",
"65 Jiangsu China 32.9711 119.4550 1.0 5.0 \n",
"66 Jiangxi China 27.6140 115.7221 2.0 7.0 \n",
"67 Jilin China 43.6661 126.1923 0.0 1.0 \n",
"68 Liaoning China 41.2956 122.6085 2.0 3.0 \n",
"69 Macau China 22.1667 113.5500 1.0 2.0 \n",
"70 Ningxia China 37.2692 106.1655 1.0 1.0 \n",
"71 Qinghai China 35.7452 95.9956 0.0 0.0 \n",
"72 Shaanxi China 35.1917 108.8701 0.0 3.0 \n",
"73 Shandong China 36.3427 118.1498 2.0 6.0 \n",
"74 Shanghai China 31.2020 121.4491 9.0 16.0 \n",
"75 Shanxi China 37.5777 112.2922 1.0 1.0 \n",
"76 Sichuan China 30.6171 102.7103 5.0 8.0 \n",
"77 Tianjin China 39.3054 117.3230 4.0 4.0 \n",
"78 Tibet China 31.6927 88.0924 0.0 0.0 \n",
"79 Xinjiang China 41.1129 85.2401 0.0 2.0 \n",
"80 Yunnan China 24.9740 101.4870 1.0 2.0 \n",
"81 Zhejiang China 29.1832 120.0934 10.0 27.0 \n",
"1 NaN China NaN NaN 548.0 643.0 \n",
"\n",
" 1/24/20 1/25/20 1/26/20 1/27/20 ... 5/19/20 5/20/20 5/21/20 \\\n",
"49 15.0 39.0 60.0 70.0 ... 991.0 991.0 991.0 \n",
"50 36.0 41.0 68.0 80.0 ... 593.0 593.0 593.0 \n",
"51 27.0 57.0 75.0 110.0 ... 579.0 579.0 579.0 \n",
"52 10.0 18.0 35.0 59.0 ... 356.0 356.0 356.0 \n",
"53 2.0 4.0 7.0 14.0 ... 139.0 139.0 139.0 \n",
"54 53.0 78.0 111.0 151.0 ... 1590.0 1590.0 1590.0 \n",
"55 23.0 23.0 36.0 46.0 ... 254.0 254.0 254.0 \n",
"56 3.0 4.0 5.0 7.0 ... 147.0 147.0 147.0 \n",
"57 8.0 19.0 22.0 33.0 ... 169.0 169.0 169.0 \n",
"58 2.0 8.0 13.0 18.0 ... 328.0 328.0 328.0 \n",
"59 4.0 9.0 15.0 21.0 ... 945.0 945.0 945.0 \n",
"60 9.0 32.0 83.0 128.0 ... 1276.0 1276.0 1276.0 \n",
"61 2.0 5.0 8.0 8.0 ... 1055.0 1055.0 1055.0 \n",
"62 549.0 761.0 1058.0 1423.0 ... 68135.0 68135.0 68135.0 \n",
"63 24.0 43.0 69.0 100.0 ... 1019.0 1019.0 1019.0 \n",
"64 1.0 7.0 7.0 11.0 ... 216.0 216.0 216.0 \n",
"65 9.0 18.0 33.0 47.0 ... 653.0 653.0 653.0 \n",
"66 18.0 18.0 36.0 72.0 ... 937.0 937.0 937.0 \n",
"67 3.0 4.0 4.0 6.0 ... 151.0 151.0 151.0 \n",
"68 4.0 17.0 21.0 27.0 ... 149.0 149.0 149.0 \n",
"69 2.0 2.0 5.0 6.0 ... 45.0 45.0 45.0 \n",
"70 2.0 3.0 4.0 7.0 ... 75.0 75.0 75.0 \n",
"71 0.0 1.0 1.0 6.0 ... 18.0 18.0 18.0 \n",
"72 5.0 15.0 22.0 35.0 ... 308.0 308.0 308.0 \n",
"73 15.0 27.0 46.0 75.0 ... 788.0 788.0 788.0 \n",
"74 20.0 33.0 40.0 53.0 ... 666.0 666.0 666.0 \n",
"75 1.0 6.0 9.0 13.0 ... 198.0 198.0 198.0 \n",
"76 15.0 28.0 44.0 69.0 ... 561.0 561.0 561.0 \n",
"77 8.0 10.0 14.0 23.0 ... 192.0 192.0 192.0 \n",
"78 0.0 0.0 0.0 0.0 ... 1.0 1.0 1.0 \n",
"79 2.0 3.0 4.0 5.0 ... 76.0 76.0 76.0 \n",
"80 5.0 11.0 16.0 26.0 ... 185.0 185.0 185.0 \n",
"81 43.0 62.0 104.0 128.0 ... 1268.0 1268.0 1268.0 \n",
"1 920.0 1406.0 2075.0 2877.0 ... 84063.0 84063.0 84063.0 \n",
"\n",
" 5/22/20 5/23/20 5/24/20 5/25/20 5/26/20 5/27/20 5/28/20 \n",
"49 991.0 991.0 991.0 991.0 991.0 991.0 991.0 \n",
"50 593.0 593.0 593.0 593.0 593.0 593.0 593.0 \n",
"51 579.0 579.0 579.0 579.0 579.0 579.0 579.0 \n",
"52 356.0 356.0 356.0 357.0 357.0 358.0 358.0 \n",
"53 139.0 139.0 139.0 139.0 139.0 139.0 139.0 \n",
"54 1591.0 1592.0 1592.0 1592.0 1592.0 1592.0 1592.0 \n",
"55 254.0 254.0 254.0 254.0 254.0 254.0 254.0 \n",
"56 147.0 147.0 147.0 147.0 147.0 147.0 147.0 \n",
"57 169.0 169.0 169.0 169.0 169.0 169.0 169.0 \n",
"58 328.0 328.0 328.0 328.0 328.0 328.0 328.0 \n",
"59 945.0 945.0 945.0 945.0 945.0 945.0 945.0 \n",
"60 1276.0 1276.0 1276.0 1276.0 1276.0 1276.0 1276.0 \n",
"61 1065.0 1065.0 1065.0 1065.0 1065.0 1066.0 1066.0 \n",
"62 68135.0 68135.0 68135.0 68135.0 68135.0 68135.0 68135.0 \n",
"63 1019.0 1019.0 1019.0 1019.0 1019.0 1019.0 1019.0 \n",
"64 217.0 217.0 227.0 232.0 232.0 232.0 232.0 \n",
"65 653.0 653.0 653.0 653.0 653.0 653.0 653.0 \n",
"66 937.0 937.0 937.0 937.0 937.0 937.0 937.0 \n",
"67 154.0 155.0 155.0 155.0 155.0 155.0 155.0 \n",
"68 149.0 149.0 149.0 149.0 149.0 149.0 149.0 \n",
"69 45.0 45.0 45.0 45.0 45.0 45.0 45.0 \n",
"70 75.0 75.0 75.0 75.0 75.0 75.0 75.0 \n",
"71 18.0 18.0 18.0 18.0 18.0 18.0 18.0 \n",
"72 308.0 308.0 308.0 308.0 308.0 308.0 308.0 \n",
"73 788.0 788.0 788.0 788.0 788.0 788.0 788.0 \n",
"74 667.0 668.0 668.0 669.0 670.0 671.0 671.0 \n",
"75 198.0 198.0 198.0 198.0 198.0 198.0 198.0 \n",
"76 563.0 563.0 564.0 564.0 564.0 564.0 564.0 \n",
"77 192.0 192.0 192.0 192.0 192.0 192.0 192.0 \n",
"78 1.0 1.0 1.0 1.0 1.0 1.0 1.0 \n",
"79 76.0 76.0 76.0 76.0 76.0 76.0 76.0 \n",
"80 185.0 185.0 185.0 185.0 185.0 185.0 185.0 \n",
"81 1268.0 1268.0 1268.0 1268.0 1268.0 1268.0 1268.0 \n",
"1 84081.0 84084.0 84095.0 84102.0 84103.0 84106.0 84106.0 \n",
"\n",
"[34 rows x 132 columns]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# For china the data have to be summed between region in order to get the results for the whole country.\n",
"dataChina = raw_data.loc[(raw_data['Country/Region'] == 'China')]\n",
"\n",
"#print(dataChina)\n",
"\n",
"#let's use df.sum() to sum rows \n",
"col_list= list(dataChina)\n",
"col_list.remove(\"Province/State\")\n",
"col_list.remove(\"Country/Region\")\n",
"col_list.remove(\"Lat\")\n",
"col_list.remove(\"Long\")\n",
"\n",
"\n",
"\n",
"for col in col_list: \n",
" dataChina.at['1', col] = dataChina[col].sum()\n",
"\n",
"\n",
"dataChina.at['1', \"Country/Region\"] = \"China\"\n",
"\n",
"dataChina"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment