...
 
Commits (42)
# **15 /03/2021**
## *La Recherche Reproductible*
La recherche reproductibles’intéresse a la mise en œuvre du meilleures pratiques de recherche et ce aussi bien sur le plan technique que épistémologique soit en prenant des notes soit quand on génére les figures des gros calculs ou des analyses de données.
# *Axes du MOOC*
Dans le 1ere module de ce MOOC cahier de note, cahier de labo on a vu la prise de note au sens large et on a apprit sur l'histoire de la prise de notes.
le 2eme parcours plutôt s'adresse plutôt aux utilisateurs du langage R (possible de suivre les 3 pour comparer les forces et les faiblesses de ces différents outils)
dans le 3e module : comment réaliser une analyse réplicable sous forme d'un document computationnelle
# *les outils*
les outils modernes disponibles pour cette activité : l'utilisation du langage python dans l'environnement Jupiter
# *la méthode des aiguilles de Buffon*
```
# %matplotlib inline
import matplotlib.pyplot as plt
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
```
# *RÉPONSE DES QUIZE*
**QUIZ 01**
1. a
2. b-c-d
3. b
4. c
**QUIZ 02**
1. c
2. b
3. c
**QUIZ 03**
1. b
2. c
3. a
**QUIZ 04**
1. a
2. a
3. a
**QUIZ 05**
1. a-b
2. a-c
3. a-b
4. b
**QUIZ 06**
1. a-b-c
2. a-c-d
3. d
4. a
5. b
**QUIZ 07**
1. a-c
2. a-b-c
3. a-b-c-d
**QUIZ 08**
1. b-c-e-f
2. a-c-d
3. c-d
**QUIZ 09**
1. a-b-c-e-f-g
2. a-b-c-d-f
**P 01**
1. a-b-c-e-f
2. f
3. a-c-e-f
**P 02**
1. a-b-c-e-f
2. a-b-e
3. a-c-e-f
**P 03**
1. a-b-c-e-f
2. f
3. a-c-e-f
test # Partie 1
\ No newline at end of file
## Sous-partie 1 : texte
Une phrase sans rien
*Une phrase en italique*
**Une phrase en gras**
Un lien vers [fun-mooc.fr](fun-mooc.fr).
Une ligne de `code`
## Sous-partie 2 : listes
**Liste à puce**
- item
- sous-item
- sous-item
- item
- item
**Liste numérotée**
1. item
2. item
3. item
## Sous-partie 3 : code
```
# Extrait de code
```
# Partie 1
## Sous-partie 1 : texte
Une phrase sans rien
*Une phrase en italique*
**Une phrase en gras**
Un lien vers [fun-mooc.fr](fun-mooc.fr).
Une ligne de `code`
## Sous-partie 2 : listes
**Liste à puce**
- item
- sous-item
- sous-item
- item
- item
**Liste numérotée**
1. item
2. item
3. item
## Sous-partie 3 : code
```
# Extrait de code
```
This diff is collapsed.
This diff is collapsed.
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercice 02 2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tableau de données"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[14. 7.6 11.2 12.8 12.5 9.9 14.9 9.4 16.9 10.2 14.9 18.1 7.3 9.8\n",
" 10.9 12.2 9.9 2.9 2.8 15.4 15.7 9.7 13.1 13.2 12.3 11.7 16. 12.4\n",
" 17.9 12.2 16.2 18.7 8.9 11.9 12.1 14.6 12.1 4.7 3.9 16.9 16.8 11.3\n",
" 14.4 15.7 14. 13.6 18. 13.6 19.9 13.7 17. 20.5 9.9 12.5 13.2 16.1\n",
" 13.5 6.3 6.4 17.6 19.1 12.8 15.5 16.3 15.2 14.6 19.1 14.4 21.4 15.1\n",
" 19.6 21.7 11.3 15. 14.3 16.8 14. 6.8 8.2 19.9 20.4 14.6 16.4 18.7\n",
" 16.8 15.8 20.4 15.8 22.4 16.2 20.3 23.4 12.1 15.5 15.4 18.4 15.7 10.2\n",
" 8.9 21. ]\n"
]
}
],
"source": [
"import numpy as np\n",
"x=np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n",
"print(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Moyenne"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"14.113000000000001\n"
]
}
],
"source": [
"m=x.mean()\n",
"print(m)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Écart-type"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.334094455301447\n"
]
}
],
"source": [
"e=np.std(x,0,ddof=1)\n",
"print(e)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Maximum"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"23.4\n"
]
}
],
"source": [
"Max=np.max(x)\n",
"print(Max)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Minimum"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.8\n"
]
}
],
"source": [
"Min=np.min(x)\n",
"print(Min)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mediane"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"14.5\n"
]
}
],
"source": [
"Med=np.median(x)\n",
"print(Med)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
This diff is collapsed.
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}