Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
8f7726592c23135ae5b65a064228781a
mooc-rr
Commits
18850d37
Commit
18850d37
authored
Aug 05, 2021
by
8f7726592c23135ae5b65a064228781a
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update toy_document_fr.Rmd
parent
0e9ec23d
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
17 deletions
+11
-17
toy_document_fr.Rmd
module2/exo1/toy_document_fr.Rmd
+11
-17
No files found.
module2/exo1/toy_document_fr.Rmd
View file @
18850d37
...
...
@@ -23,31 +23,25 @@ Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedi
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
theta = pi/2*runif(N)2/(mean(x+sin(theta)>1))
```
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel
à la fonction sinus se base sur le fait que
si $X\sim U(0,1)$ et $Y\sim U(0,1)$
alors $P[X^2+Y^2\leq 1] = \pi/4$
(voir [méthode de Monte Carlo sur Wikipedia]
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si
$X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia]
(https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)).
Le code suivant illustre ce fait :
```{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$
en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1
:
en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1:
```{r}
```{r}
4*mean(df$Accept)
```
```
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment