Update toy_document_fr.Rmd

parent 940d311e
......@@ -26,11 +26,13 @@ x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P
[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia]
(https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-
Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r}
set.seed(42)
N = 1000
......@@ -39,8 +41,10 @@ df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant com
bien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
4*mean(df$Accept)
```
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment