Prise en main avec Rstudio pour la production d'un document

parent 97ca3297
...@@ -8,14 +8,16 @@ output: html_document ...@@ -8,14 +8,16 @@ output: html_document
## En demandant à la lib maths ## En demandant à la lib maths
Mon ordinateur m’indique que π vaut *approximativement * Mon ordinateur m’indique que $\pi$ vaut *approximativement *
```{r} ```{r}
pi pi
``` ```
En utilisant la méthode des aiguilles de Buffon Mais calculé avec la **méthode ** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode ** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -26,9 +28,12 @@ theta = pi/2*runif(N) ...@@ -26,9 +28,12 @@ theta = pi/2*runif(N)
``` ```
# Avec un argument “fréquentiel” de surface ## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel
à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$
(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)).
Le code suivant illustre ce fait :
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -39,7 +44,7 @@ library(ggplot2) ...@@ -39,7 +44,7 @@ library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, X2+Y2 est inférieur à 1: Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r} ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment