Les données de l'incidence de la varicelle sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1990 et se termine avec une semaine récente. L'URL est:
Aussi pour des raisons de perennité des données nous trouvons préférable de faire d'abord une copie des données, puis d'utiliser cette copie dans le présent document computationnel. Nous conservons également l'url d'originie comme ci-dessus mentionné
```{r}
data_file = "Varicelle.csv"
if (!file.exists(data_file)) {
download.file(data_url, data_file, method="auto")
}
```
Voici l'explication des colonnes donnée sur le [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):
| `indicator` | Code de l'indicateur de surveillance |
| `inc` | Estimation de l'incidence de consultations en nombre de cas |
| `inc_low` | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |
| `inc_up` | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |
| `inc100` | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |
| `inc100_low` | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |
| `inc100_up` | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |
| `geo_insee` | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |
| `geo_name` | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |
La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skip=1`.
### Lecture
```{r}
data = read.csv(data_file, skip=1)
```
Regardons ce que nous avons obtenu:
```{r}
head(data)
tail(data)
```
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Y a-t-il des points manquants dans nos données ?
```{r}
na_records = apply(data, 1, function (x) any(is.na(x)))
data[na_records,]
```
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
Les deux colonnes qui nous intéressent sont `week` et `inc`. Vérifions leurs classes:
```{r}
class(data$week)
class(data$inc)
```
Ce sont des entiers, tout va bien !
### Conversion des numéros de semaine
La gestion des dates est toujours un sujet délicat. Il y a un grand nombre de conventions différentes qu'il ne faut pas confondre. Notre jeux de données utilise un format que peu de logiciels savent traiter: les semaines en format [ISO-8601](https://en.wikipedia.org/wiki/ISO_8601). En `R`, il est géré par la bibliothèque [parsedate](https://cran.r-project.org/package=parsedate):
```{r cars}
```{r}
summary(cars)
library(parsedate)
```
```
Et on peut aussi aisément inclure des figures. Par exemple:
Pour faciliter le traitement suivant, nous remplaçons ces semaines par les dates qui correspondent aux lundis. Voici une petite fonction qui fait la conversion pour une seule valeur:
```{r}
convert_week = function(w) {
ws = paste(w)
iso = paste0(substring(ws, 1, 4), "-W", substring(ws, 5, 6))
as.character(parse_iso_8601(iso))
}
```
```{r pressure, echo=FALSE}
Nous appliquons cette fonction à tous les points, créant une nouvelle colonne `date` dans notre jeu de données:
plot(pressure)
```{r}
data$date = as.Date(convert_week(data$week))
```
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Vérifions qu'elle est de classe `Date`:
```{r}
class(data$date)
```
Les points sont dans l'ordre chronologique inverse, il est donc utile de les trier:
```{r}
data = data[order(data$date),]
```
C'est l'occasion pour faire une vérification: nos dates doivent être séparées d'exactement sept jours:
Étant donné que le pic de l'épidémie se situe en hiver, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er août de l'année $N$ au 1er août de l'année $N+1$. Nous mettons l'année $N+1$ comme étiquette sur cette année décalée, car le pic de l'épidémie est toujours au début de l'année $N+1$. Comme l'incidence de syndrome grippal est très faible en été, cette modification ne risque pas de fausser nos conclusions.
L'argument `na.rm=True` dans la sommation précise qu'il faut supprimer les points manquants. Ce choix est raisonnable car il n'y a qu'un seul point manquant, dont l'impact ne peut pas être très fort.
```{r}
pic_annuel = function(annee) {
debut = paste0(annee-1,"-09-01")
fin = paste0(annee,"-09-01")
semaines = data$date > debut & data$date <= fin
sum(data$inc[semaines], na.rm=TRUE)
}
```
Nous devons aussi faire attention aux premières et dernières années de notre jeux de données. Les données commencent en decembre 1990, ce qui ne permet pas de quantifier complètement le pic attribué à 1990. Nous l'enlevons donc de notre analyse. Par contre, pour 2020, les données se terminant avant le 1er Septembre 2020, nous l'excluons egalement de notre analyse.
```{r}
annees = 1991:2019
```
Nous créons un nouveau jeu de données pour l'incidence annuelle, en applicant la fonction `pic_annuel` à chaque année:
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
### Identification des épidémies les plus fortes et des plus faibles
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
Une liste triée par ordre décroissant d'incidence annuelle permet de plus facilement repérer les valeurs les plus élevées: