Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
a18376894a788ea9b9787b8ab4d7a164
mooc-rr
Commits
9386230e
Commit
9386230e
authored
Jan 04, 2023
by
a18376894a788ea9b9787b8ab4d7a164
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update
parent
844522f1
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1214 additions
and
3 deletions
+1214
-3
exercice.ipynb
module3/exo2/exercice.ipynb
+1214
-3
No files found.
module3/exo2/exercice.ipynb
View file @
9386230e
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
" %matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import isoweek"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>week</th>\n",
" <th>indicator</th>\n",
" <th>inc</th>\n",
" <th>inc_low</th>\n",
" <th>inc_up</th>\n",
" <th>inc100</th>\n",
" <th>inc100_low</th>\n",
" <th>inc100_up</th>\n",
" <th>geo_insee</th>\n",
" <th>geo_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>202251</td>\n",
" <td>7</td>\n",
" <td>6372</td>\n",
" <td>3911</td>\n",
" <td>8833</td>\n",
" <td>10</td>\n",
" <td>6</td>\n",
" <td>14</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>202250</td>\n",
" <td>7</td>\n",
" <td>6590</td>\n",
" <td>3100</td>\n",
" <td>10080</td>\n",
" <td>10</td>\n",
" <td>5</td>\n",
" <td>15</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>202249</td>\n",
" <td>7</td>\n",
" <td>5095</td>\n",
" <td>3212</td>\n",
" <td>6978</td>\n",
" <td>8</td>\n",
" <td>5</td>\n",
" <td>11</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>202248</td>\n",
" <td>7</td>\n",
" <td>4985</td>\n",
" <td>3043</td>\n",
" <td>6927</td>\n",
" <td>8</td>\n",
" <td>5</td>\n",
" <td>11</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>202247</td>\n",
" <td>7</td>\n",
" <td>6087</td>\n",
" <td>3733</td>\n",
" <td>8441</td>\n",
" <td>9</td>\n",
" <td>5</td>\n",
" <td>13</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>202246</td>\n",
" <td>7</td>\n",
" <td>3033</td>\n",
" <td>1392</td>\n",
" <td>4674</td>\n",
" <td>5</td>\n",
" <td>3</td>\n",
" <td>7</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>202245</td>\n",
" <td>7</td>\n",
" <td>3827</td>\n",
" <td>1720</td>\n",
" <td>5934</td>\n",
" <td>6</td>\n",
" <td>3</td>\n",
" <td>9</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>202244</td>\n",
" <td>7</td>\n",
" <td>4271</td>\n",
" <td>2231</td>\n",
" <td>6311</td>\n",
" <td>6</td>\n",
" <td>3</td>\n",
" <td>9</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>202243</td>\n",
" <td>7</td>\n",
" <td>5863</td>\n",
" <td>3302</td>\n",
" <td>8424</td>\n",
" <td>9</td>\n",
" <td>5</td>\n",
" <td>13</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>202242</td>\n",
" <td>7</td>\n",
" <td>3770</td>\n",
" <td>1950</td>\n",
" <td>5590</td>\n",
" <td>6</td>\n",
" <td>3</td>\n",
" <td>9</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>202241</td>\n",
" <td>7</td>\n",
" <td>4177</td>\n",
" <td>2219</td>\n",
" <td>6135</td>\n",
" <td>6</td>\n",
" <td>3</td>\n",
" <td>9</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>202240</td>\n",
" <td>7</td>\n",
" <td>4883</td>\n",
" <td>1472</td>\n",
" <td>8294</td>\n",
" <td>7</td>\n",
" <td>2</td>\n",
" <td>12</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>202239</td>\n",
" <td>7</td>\n",
" <td>2041</td>\n",
" <td>331</td>\n",
" <td>3751</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>6</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>202238</td>\n",
" <td>7</td>\n",
" <td>1771</td>\n",
" <td>419</td>\n",
" <td>3123</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>202237</td>\n",
" <td>7</td>\n",
" <td>1725</td>\n",
" <td>499</td>\n",
" <td>2951</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>202236</td>\n",
" <td>7</td>\n",
" <td>1069</td>\n",
" <td>178</td>\n",
" <td>1960</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>202235</td>\n",
" <td>7</td>\n",
" <td>1581</td>\n",
" <td>400</td>\n",
" <td>2762</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>4</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>202234</td>\n",
" <td>7</td>\n",
" <td>2266</td>\n",
" <td>788</td>\n",
" <td>3744</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>202233</td>\n",
" <td>7</td>\n",
" <td>7340</td>\n",
" <td>0</td>\n",
" <td>17399</td>\n",
" <td>11</td>\n",
" <td>0</td>\n",
" <td>26</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>202232</td>\n",
" <td>7</td>\n",
" <td>7801</td>\n",
" <td>4086</td>\n",
" <td>11516</td>\n",
" <td>12</td>\n",
" <td>6</td>\n",
" <td>18</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>202231</td>\n",
" <td>7</td>\n",
" <td>6896</td>\n",
" <td>4170</td>\n",
" <td>9622</td>\n",
" <td>10</td>\n",
" <td>6</td>\n",
" <td>14</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>202230</td>\n",
" <td>7</td>\n",
" <td>9039</td>\n",
" <td>5770</td>\n",
" <td>12308</td>\n",
" <td>14</td>\n",
" <td>9</td>\n",
" <td>19</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>202229</td>\n",
" <td>7</td>\n",
" <td>14851</td>\n",
" <td>10060</td>\n",
" <td>19642</td>\n",
" <td>22</td>\n",
" <td>15</td>\n",
" <td>29</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>202228</td>\n",
" <td>7</td>\n",
" <td>15471</td>\n",
" <td>11028</td>\n",
" <td>19914</td>\n",
" <td>23</td>\n",
" <td>16</td>\n",
" <td>30</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>202227</td>\n",
" <td>7</td>\n",
" <td>21191</td>\n",
" <td>16198</td>\n",
" <td>26184</td>\n",
" <td>32</td>\n",
" <td>24</td>\n",
" <td>40</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>202226</td>\n",
" <td>7</td>\n",
" <td>16854</td>\n",
" <td>12806</td>\n",
" <td>20902</td>\n",
" <td>25</td>\n",
" <td>19</td>\n",
" <td>31</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>202225</td>\n",
" <td>7</td>\n",
" <td>22246</td>\n",
" <td>18011</td>\n",
" <td>26481</td>\n",
" <td>34</td>\n",
" <td>28</td>\n",
" <td>40</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>202224</td>\n",
" <td>7</td>\n",
" <td>22458</td>\n",
" <td>18105</td>\n",
" <td>26811</td>\n",
" <td>34</td>\n",
" <td>27</td>\n",
" <td>41</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>202223</td>\n",
" <td>7</td>\n",
" <td>18772</td>\n",
" <td>14875</td>\n",
" <td>22669</td>\n",
" <td>28</td>\n",
" <td>22</td>\n",
" <td>34</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>202222</td>\n",
" <td>7</td>\n",
" <td>18916</td>\n",
" <td>14941</td>\n",
" <td>22891</td>\n",
" <td>29</td>\n",
" <td>23</td>\n",
" <td>35</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1643</th>\n",
" <td>199126</td>\n",
" <td>7</td>\n",
" <td>17608</td>\n",
" <td>11304</td>\n",
" <td>23912</td>\n",
" <td>31</td>\n",
" <td>20</td>\n",
" <td>42</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1644</th>\n",
" <td>199125</td>\n",
" <td>7</td>\n",
" <td>16169</td>\n",
" <td>10700</td>\n",
" <td>21638</td>\n",
" <td>28</td>\n",
" <td>18</td>\n",
" <td>38</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1645</th>\n",
" <td>199124</td>\n",
" <td>7</td>\n",
" <td>16171</td>\n",
" <td>10071</td>\n",
" <td>22271</td>\n",
" <td>28</td>\n",
" <td>17</td>\n",
" <td>39</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1646</th>\n",
" <td>199123</td>\n",
" <td>7</td>\n",
" <td>11947</td>\n",
" <td>7671</td>\n",
" <td>16223</td>\n",
" <td>21</td>\n",
" <td>13</td>\n",
" <td>29</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1647</th>\n",
" <td>199122</td>\n",
" <td>7</td>\n",
" <td>15452</td>\n",
" <td>9953</td>\n",
" <td>20951</td>\n",
" <td>27</td>\n",
" <td>17</td>\n",
" <td>37</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1648</th>\n",
" <td>199121</td>\n",
" <td>7</td>\n",
" <td>14903</td>\n",
" <td>8975</td>\n",
" <td>20831</td>\n",
" <td>26</td>\n",
" <td>16</td>\n",
" <td>36</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1649</th>\n",
" <td>199120</td>\n",
" <td>7</td>\n",
" <td>19053</td>\n",
" <td>12742</td>\n",
" <td>25364</td>\n",
" <td>34</td>\n",
" <td>23</td>\n",
" <td>45</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1650</th>\n",
" <td>199119</td>\n",
" <td>7</td>\n",
" <td>16739</td>\n",
" <td>11246</td>\n",
" <td>22232</td>\n",
" <td>29</td>\n",
" <td>19</td>\n",
" <td>39</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1651</th>\n",
" <td>199118</td>\n",
" <td>7</td>\n",
" <td>21385</td>\n",
" <td>13882</td>\n",
" <td>28888</td>\n",
" <td>38</td>\n",
" <td>25</td>\n",
" <td>51</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1652</th>\n",
" <td>199117</td>\n",
" <td>7</td>\n",
" <td>13462</td>\n",
" <td>8877</td>\n",
" <td>18047</td>\n",
" <td>24</td>\n",
" <td>16</td>\n",
" <td>32</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1653</th>\n",
" <td>199116</td>\n",
" <td>7</td>\n",
" <td>14857</td>\n",
" <td>10068</td>\n",
" <td>19646</td>\n",
" <td>26</td>\n",
" <td>18</td>\n",
" <td>34</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1654</th>\n",
" <td>199115</td>\n",
" <td>7</td>\n",
" <td>13975</td>\n",
" <td>9781</td>\n",
" <td>18169</td>\n",
" <td>25</td>\n",
" <td>18</td>\n",
" <td>32</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1655</th>\n",
" <td>199114</td>\n",
" <td>7</td>\n",
" <td>12265</td>\n",
" <td>7684</td>\n",
" <td>16846</td>\n",
" <td>22</td>\n",
" <td>14</td>\n",
" <td>30</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1656</th>\n",
" <td>199113</td>\n",
" <td>7</td>\n",
" <td>9567</td>\n",
" <td>6041</td>\n",
" <td>13093</td>\n",
" <td>17</td>\n",
" <td>11</td>\n",
" <td>23</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1657</th>\n",
" <td>199112</td>\n",
" <td>7</td>\n",
" <td>10864</td>\n",
" <td>7331</td>\n",
" <td>14397</td>\n",
" <td>19</td>\n",
" <td>13</td>\n",
" <td>25</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1658</th>\n",
" <td>199111</td>\n",
" <td>7</td>\n",
" <td>15574</td>\n",
" <td>11184</td>\n",
" <td>19964</td>\n",
" <td>27</td>\n",
" <td>19</td>\n",
" <td>35</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1659</th>\n",
" <td>199110</td>\n",
" <td>7</td>\n",
" <td>16643</td>\n",
" <td>11372</td>\n",
" <td>21914</td>\n",
" <td>29</td>\n",
" <td>20</td>\n",
" <td>38</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1660</th>\n",
" <td>199109</td>\n",
" <td>7</td>\n",
" <td>13741</td>\n",
" <td>8780</td>\n",
" <td>18702</td>\n",
" <td>24</td>\n",
" <td>15</td>\n",
" <td>33</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1661</th>\n",
" <td>199108</td>\n",
" <td>7</td>\n",
" <td>13289</td>\n",
" <td>8813</td>\n",
" <td>17765</td>\n",
" <td>23</td>\n",
" <td>15</td>\n",
" <td>31</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1662</th>\n",
" <td>199107</td>\n",
" <td>7</td>\n",
" <td>12337</td>\n",
" <td>8077</td>\n",
" <td>16597</td>\n",
" <td>22</td>\n",
" <td>15</td>\n",
" <td>29</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1663</th>\n",
" <td>199106</td>\n",
" <td>7</td>\n",
" <td>10877</td>\n",
" <td>7013</td>\n",
" <td>14741</td>\n",
" <td>19</td>\n",
" <td>12</td>\n",
" <td>26</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1664</th>\n",
" <td>199105</td>\n",
" <td>7</td>\n",
" <td>10442</td>\n",
" <td>6544</td>\n",
" <td>14340</td>\n",
" <td>18</td>\n",
" <td>11</td>\n",
" <td>25</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1665</th>\n",
" <td>199104</td>\n",
" <td>7</td>\n",
" <td>7913</td>\n",
" <td>4563</td>\n",
" <td>11263</td>\n",
" <td>14</td>\n",
" <td>8</td>\n",
" <td>20</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1666</th>\n",
" <td>199103</td>\n",
" <td>7</td>\n",
" <td>15387</td>\n",
" <td>10484</td>\n",
" <td>20290</td>\n",
" <td>27</td>\n",
" <td>18</td>\n",
" <td>36</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1667</th>\n",
" <td>199102</td>\n",
" <td>7</td>\n",
" <td>16277</td>\n",
" <td>11046</td>\n",
" <td>21508</td>\n",
" <td>29</td>\n",
" <td>20</td>\n",
" <td>38</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1668</th>\n",
" <td>199101</td>\n",
" <td>7</td>\n",
" <td>15565</td>\n",
" <td>10271</td>\n",
" <td>20859</td>\n",
" <td>27</td>\n",
" <td>18</td>\n",
" <td>36</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1669</th>\n",
" <td>199052</td>\n",
" <td>7</td>\n",
" <td>19375</td>\n",
" <td>13295</td>\n",
" <td>25455</td>\n",
" <td>34</td>\n",
" <td>23</td>\n",
" <td>45</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1670</th>\n",
" <td>199051</td>\n",
" <td>7</td>\n",
" <td>19080</td>\n",
" <td>13807</td>\n",
" <td>24353</td>\n",
" <td>34</td>\n",
" <td>25</td>\n",
" <td>43</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1671</th>\n",
" <td>199050</td>\n",
" <td>7</td>\n",
" <td>11079</td>\n",
" <td>6660</td>\n",
" <td>15498</td>\n",
" <td>20</td>\n",
" <td>12</td>\n",
" <td>28</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1672</th>\n",
" <td>199049</td>\n",
" <td>7</td>\n",
" <td>1143</td>\n",
" <td>0</td>\n",
" <td>2610</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>5</td>\n",
" <td>FR</td>\n",
" <td>France</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1673 rows × 10 columns</p>\n",
"</div>"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"0 202251 7 6372 3911 8833 10 6 \n",
"1 202250 7 6590 3100 10080 10 5 \n",
"2 202249 7 5095 3212 6978 8 5 \n",
"3 202248 7 4985 3043 6927 8 5 \n",
"4 202247 7 6087 3733 8441 9 5 \n",
"5 202246 7 3033 1392 4674 5 3 \n",
"6 202245 7 3827 1720 5934 6 3 \n",
"7 202244 7 4271 2231 6311 6 3 \n",
"8 202243 7 5863 3302 8424 9 5 \n",
"9 202242 7 3770 1950 5590 6 3 \n",
"10 202241 7 4177 2219 6135 6 3 \n",
"11 202240 7 4883 1472 8294 7 2 \n",
"12 202239 7 2041 331 3751 3 0 \n",
"13 202238 7 1771 419 3123 3 1 \n",
"14 202237 7 1725 499 2951 3 1 \n",
"15 202236 7 1069 178 1960 2 1 \n",
"16 202235 7 1581 400 2762 2 0 \n",
"17 202234 7 2266 788 3744 3 1 \n",
"18 202233 7 7340 0 17399 11 0 \n",
"19 202232 7 7801 4086 11516 12 6 \n",
"20 202231 7 6896 4170 9622 10 6 \n",
"21 202230 7 9039 5770 12308 14 9 \n",
"22 202229 7 14851 10060 19642 22 15 \n",
"23 202228 7 15471 11028 19914 23 16 \n",
"24 202227 7 21191 16198 26184 32 24 \n",
"25 202226 7 16854 12806 20902 25 19 \n",
"26 202225 7 22246 18011 26481 34 28 \n",
"27 202224 7 22458 18105 26811 34 27 \n",
"28 202223 7 18772 14875 22669 28 22 \n",
"29 202222 7 18916 14941 22891 29 23 \n",
"... ... ... ... ... ... ... ... \n",
"1643 199126 7 17608 11304 23912 31 20 \n",
"1644 199125 7 16169 10700 21638 28 18 \n",
"1645 199124 7 16171 10071 22271 28 17 \n",
"1646 199123 7 11947 7671 16223 21 13 \n",
"1647 199122 7 15452 9953 20951 27 17 \n",
"1648 199121 7 14903 8975 20831 26 16 \n",
"1649 199120 7 19053 12742 25364 34 23 \n",
"1650 199119 7 16739 11246 22232 29 19 \n",
"1651 199118 7 21385 13882 28888 38 25 \n",
"1652 199117 7 13462 8877 18047 24 16 \n",
"1653 199116 7 14857 10068 19646 26 18 \n",
"1654 199115 7 13975 9781 18169 25 18 \n",
"1655 199114 7 12265 7684 16846 22 14 \n",
"1656 199113 7 9567 6041 13093 17 11 \n",
"1657 199112 7 10864 7331 14397 19 13 \n",
"1658 199111 7 15574 11184 19964 27 19 \n",
"1659 199110 7 16643 11372 21914 29 20 \n",
"1660 199109 7 13741 8780 18702 24 15 \n",
"1661 199108 7 13289 8813 17765 23 15 \n",
"1662 199107 7 12337 8077 16597 22 15 \n",
"1663 199106 7 10877 7013 14741 19 12 \n",
"1664 199105 7 10442 6544 14340 18 11 \n",
"1665 199104 7 7913 4563 11263 14 8 \n",
"1666 199103 7 15387 10484 20290 27 18 \n",
"1667 199102 7 16277 11046 21508 29 20 \n",
"1668 199101 7 15565 10271 20859 27 18 \n",
"1669 199052 7 19375 13295 25455 34 23 \n",
"1670 199051 7 19080 13807 24353 34 25 \n",
"1671 199050 7 11079 6660 15498 20 12 \n",
"1672 199049 7 1143 0 2610 2 0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"0 14 FR France \n",
"1 15 FR France \n",
"2 11 FR France \n",
"3 11 FR France \n",
"4 13 FR France \n",
"5 7 FR France \n",
"6 9 FR France \n",
"7 9 FR France \n",
"8 13 FR France \n",
"9 9 FR France \n",
"10 9 FR France \n",
"11 12 FR France \n",
"12 6 FR France \n",
"13 5 FR France \n",
"14 5 FR France \n",
"15 3 FR France \n",
"16 4 FR France \n",
"17 5 FR France \n",
"18 26 FR France \n",
"19 18 FR France \n",
"20 14 FR France \n",
"21 19 FR France \n",
"22 29 FR France \n",
"23 30 FR France \n",
"24 40 FR France \n",
"25 31 FR France \n",
"26 40 FR France \n",
"27 41 FR France \n",
"28 34 FR France \n",
"29 35 FR France \n",
"... ... ... ... \n",
"1643 42 FR France \n",
"1644 38 FR France \n",
"1645 39 FR France \n",
"1646 29 FR France \n",
"1647 37 FR France \n",
"1648 36 FR France \n",
"1649 45 FR France \n",
"1650 39 FR France \n",
"1651 51 FR France \n",
"1652 32 FR France \n",
"1653 34 FR France \n",
"1654 32 FR France \n",
"1655 30 FR France \n",
"1656 23 FR France \n",
"1657 25 FR France \n",
"1658 35 FR France \n",
"1659 38 FR France \n",
"1660 33 FR France \n",
"1661 31 FR France \n",
"1662 29 FR France \n",
"1663 26 FR France \n",
"1664 25 FR France \n",
"1665 20 FR France \n",
"1666 36 FR France \n",
"1667 38 FR France \n",
"1668 36 FR France \n",
"1669 45 FR France \n",
"1670 43 FR France \n",
"1671 28 FR France \n",
"1672 5 FR France \n",
"\n",
"[1673 rows x 10 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
"raw_data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>week</th>\n",
" <th>indicator</th>\n",
" <th>inc</th>\n",
" <th>inc_low</th>\n",
" <th>inc_up</th>\n",
" <th>inc100</th>\n",
" <th>inc100_low</th>\n",
" <th>inc100_up</th>\n",
" <th>geo_insee</th>\n",
" <th>geo_name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
"Index: []"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
" def convert_week(year_and_week_int):\n",
" year_and_week_str = str(year_and_week_int)\n",
" year = int(year_and_week_str[:4])\n",
" week = int(year_and_week_str[4:])\n",
" w = isoweek.Week(year, week)\n",
" return pd.Period(w.day(0), 'W')\n",
"\n",
"raw_data['period'] = [convert_week(yw) for yw in raw_data['week']]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"sorted_data = raw_data.set_index('period').sort_index()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
" periods = sorted_data.index\n",
"for p1, p2 in zip(periods[:-1], periods[1:]):\n",
" delta = p2.to_timestamp() - p1.end_time\n",
" if delta > pd.Timedelta('1s'):\n",
" print(p1, p2)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
" first_august_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
" for y in range(1990,\n",
" sorted_data.index[-1].year)]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_august_week[:-1],\n",
" first_august_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" yearly_incidence.append(one_year.sum())\n",
" year.append(week2.year)\n",
"yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f14c2725d30>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHCxJREFUeJzt3X9wndV95/H3x8iRgNrEBpn4B2A6cZgYkkJ8x3Y32W6JW9tsOthMIdGGBs3iGSfApqSzM2AHdpgFdwY6O5vWkwmLJxQMhB9ebxncFi8RZjP17jq25UAKhrhSAjEODhIrB0xmrCL83T/uUX2lyFfPla703Hv1ec3cuc/96jnnPseP5O99zjnPuYoIzMzMspiW9wGYmVn9cNIwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMmvK+wCq7bzzzouFCxfmfRhmZnXlwIED70RE62j7NVzSWLhwIZ2dnXkfhplZXZH08yz7uXvKzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jBrcD3vneCLD+yh5/iJvA/FGoCThlmD27yri/1v9LH5+a68D8UaQMPdp2FmRZfcuZP+gZP/8vqxvYd5bO9hmpumcWjTVTkemdUzX2mMgS/3rR7svu1Krr58Hi3Ti3/mLdOnsebyeey+/cqcj8zqmZPGGPhy3+rBnJktzGhuon/gJM1N0+gfOMmM5ibmzGgZcX9/GLIs3D1VAV/uW7155/1+rl92EV9eeiGP7ztMb5mEUPphaNM1n5rEo7R6oojI+xiqqlAoxEStPdXz3gk2Pfsa3z/4S058cJKW6dNYdenHuOMLnzztpzezWjf8w9AgfxiaWiQdiIjCaPu5e6oClV7um9UDj31YJdw9VaFKLvfN6oE/DFklnDQq9MBXTl29bVp7WY5HYlY9/jBkWXlMw8zMPKZhZmbV56RhZmaZZUoakv5M0kFJr0h6QlKLpNmSOiR1pedZJftvlNQt6ZCkVSXxJZJeTj/bLEkp3izpqRTfK2lhSZn29B5dktqr13QzM6vUqElD0nzgT4FCRFwGnAG0ARuAXRGxCNiVXiNpcfr5pcBq4DuSzkjV3Q+sBxalx+oUXwcci4iPA98C7kt1zQbuApYBS4G7SpOTmZlNrqzdU03AmZKagLOAt4A1wNb0863A2rS9BngyIvoj4nWgG1gqaS4wMyL2RHH0/ZFhZQbr2g6sSFchq4COiOiLiGNAB6cSjZmZTbJRk0ZE/AL4L8Bh4CjwbkR8Hzg/Io6mfY4Cc1KR+cCbJVUcSbH5aXt4fEiZiBgA3gXOLVOXmZnlIEv31CyKVwIXA/OAsyX9SbkiI8SiTHysZUqPcb2kTkmdvb29ZQ7NzMzGI0v31B8Ar0dEb0R8APwN8K+At1OXE+m5J+1/BLigpPwCit1ZR9L28PiQMqkL7Bygr0xdQ0TElogoREShtbU1Q5PMzGwssiSNw8BySWelcYYVwGvADmBwNlM78Eza3gG0pRlRF1Mc8N6XurCOS1qe6rlhWJnBuq4FXkjjHs8BKyXNSlc8K1PMzGzcvBx85UZdRiQi9kraDvwIGABeBLYAvwVsk7SOYmK5Lu1/UNI24NW0/y0R8WGq7ibgYeBMYGd6ADwIPCqpm+IVRluqq0/SPcD+tN/dEdE3rhabmSVeDr5yXkbE7DR63jvBf3jiRb795Su8eF+D8XLwv8nLiJiNk7+hsXF5Ofix8yq3ZsP4Gxobn5eDHztfaZgN40+hU8PgcvBP3/xZrl92Eb3v9+d9SHXBVxpmw/hT6NTg78YZGycNsxH4S4nMRubZUzaleEaU2cg8e8pyUes3S3lGlNn4uHvKqqpWb5byjCiz6nD3lFVFrd8s1fPeCTY9+xrfP/hLTnxwkpbp01h16ce44wufrNtuKne1WTW5e8omVa1PU23EGVHuarM8uHvKqqIe/lNulBlR7mqzPDlpWNXU+n/KjTIvf/dtV562q81sojlpWNU0yn/Kta4eruqscTlpmNWhWr+qs8bl2VNmZubZU2ZmVn1OGmZmlpmThpmZZeakYVZjan39LpvanDTMaozv9LZa5im3ZjXCd3pbPfCVhlmNqPX1u8zAScOsZvhOb6sHoyYNSZdIeqnk8Z6kb0iaLalDUld6nlVSZqOkbkmHJK0qiS+R9HL62WZJSvFmSU+l+F5JC0vKtKf36JLUXt3mm9WWwTu9n775s1y/7CJ63+/P+5DMhqjojnBJZwC/AJYBtwB9EXGvpA3ArIi4XdJi4AlgKTAPeB74RER8KGkfcCvwQ+BZYHNE7JR0M/DpiPiapDbgmoj4kqTZQCdQAAI4ACyJiGOnO0bfEW5Wf/zdIPmbqDvCVwA/jYifA2uArSm+FVibttcAT0ZEf0S8DnQDSyXNBWZGxJ4oZqpHhpUZrGs7sCJdhawCOiKiLyWKDmB1hcdsZjXOM8bqR6Wzp9ooXkUAnB8RRwEi4qikOSk+n+KVxKAjKfZB2h4eHyzzZqprQNK7wLml8RHKmFmd84yx+pP5SkPSR4Crgf8+2q4jxKJMfKxlSo9tvaROSZ29vb2jHJ6Z1QrPGKs/lXRPXQX8KCLeTq/fTl1OpOeeFD8CXFBSbgHwVoovGCE+pIykJuAcoK9MXUNExJaIKEREobW1tYImmVmeKp0x5rvl81dJ0vh3nOqaAtgBDM5mageeKYm3pRlRFwOLgH2pK+u4pOVpvOKGYWUG67oWeCGNezwHrJQ0K83OWpliViX+I7S8VTJjzGMf+cs0e0rSWRTHFn47It5NsXOBbcCFwGHguojoSz+7A7gRGAC+ERE7U7wAPAycCewEvh4RIakFeBS4guIVRltE/CyVuRH4ZjqUP4+Ih8odq2dPVebOp1/me/sOc/3SC9l0zafyPhyzEQ0f+xjksY/qyTp7yl/CNEVV+kfoKZGWp573Tpz2e9H9+1gd/hImK6vSAUh3C1iefLd87fCChVNU1j9CT4m0WuHvRa8NThpTWJY/wt23XXnabgGzyfTAV071nGxae1mORzK1OWlMYVn+CN0tYGalPKZRA2p92qsX0TOzQZ49VQM87dXM8pZ19pS7p3LkQWYzqzfunspRpdNea70by8wan5NGjiodZPa9EmaWN3dP5SzLtFd3Y5lZrfBA+ASq1tIbXkLBao2XlWk8XkakBlSrO8n3SlitcVfp1OXuqQkwEd1JXkLBaoG7Ss3dUxPA3Uk2kkbo0vHvduNy91SO3J00tWSdCt0IXTr+3TZ3T00QdydNHaXJYKQ7+hutS8e/21Obu6fMxijrF1lN5S6dRuiSmyrcPWUNoZbvgs96R/9U7tJphC45G8rdU5aLrJ9AR+v6yVMlyWCqdek0WpecneLuKcvFaCv7Vvod5nn56qOdtM5oGZIMSr+nZKqayl1y9cqr3FpNyvoJtF6+MdDfJjeyqdwl1+g8pmGTyuMAU4e/vKsx+UrDJpXHAaaOPK/CPGtr4mS60pD0UUnbJf1E0muSflfSbEkdkrrS86yS/TdK6pZ0SNKqkvgSSS+nn22WpBRvlvRUiu+VtLCkTHt6jy5J7dVruuUl6yfQB75SYNPay1g8byab1l7msQLLzLO2Jk6mgXBJW4HdEfFdSR8BzgK+CfRFxL2SNgCzIuJ2SYuBJ4ClwDzgeeATEfGhpH3ArcAPgWeBzRGxU9LNwKcj4muS2oBrIuJLkmYDnUABCOAAsCQijp3uWD0QbjZ11csEilpUtfs0JM0Efg94ECAi/jkifgWsAbam3bYCa9P2GuDJiOiPiNeBbmCppLnAzIjYE8VM9ciwMoN1bQdWpKuQVUBHRPSlRNEBrB7tmM1saqr02zCtclm6p34b6AUekvSipO9KOhs4PyKOAqTnOWn/+cCbJeWPpNj8tD08PqRMRAwA7wLnlqlrCEnrJXVK6uzt7c3QJDNrRJ5AMfGyJI0m4DPA/RFxBfBrYEOZ/TVCLMrEx1rmVCBiS0QUIqLQ2tpa5tDMrNF51tbEyjJ76ghwJCL2ptfbKSaNtyXNjYijqeupp2T/C0rKLwDeSvEFI8RLyxyR1AScA/Sl+O8PK/ODTC0zsympXu6dqdcZXqNeaUTEL4E3JV2SQiuAV4EdwOBspnbgmbS9A2hLM6IuBhYB+1IX1nFJy9N4xQ3DygzWdS3wQhr3eA5YKWlWmp21MsXMzOpavc7wynqfxteB76WZUz8D/j3FhLNN0jrgMHAdQEQclLSNYmIZAG6JiA9TPTcBDwNnAjvTA4qD7I9K6qZ4hdGW6uqTdA+wP+13d0T0jbGtZma5q/d1ubz2lJnZJKrVdbm8NLqZWQ2q9xleXkbEzGyS1fMSOe6eMjMzd09NZbX8bXdmVt+cNBpQvU7lM7Pa5zGNBlLvU/nMrPb5SqNEvXfreLE2M5toThol6r1bp96n8pnVqnr/QFlN7p6isbp16nkqn1mtKv1AuemaT+V9OLnylFtq9w5NM8vXVPpSJ0+5rYC7dcxsJGMZJ2z0riwnjcRr8JvZcGP5QFnvY6OjcfeUmVkZX320k9YZLUPGCUu/s2NQvXdlZe2ectIwM6uCeh8b9ZiGmdkkmipjo55ya2ZWJVNhyru7p8zMzN1TZmZWfU4a1hAafW68Wa1w0rCG0Ohz481qhQfCra410rphZvXAVxpW17wcvNnkctKwujZV5sab1YpMSUPSG5JelvSSpM4Umy2pQ1JXep5Vsv9GSd2SDklaVRJfkurplrRZklK8WdJTKb5X0sKSMu3pPboktVer4dY4vG6Y2eTJdJ+GpDeAQkS8UxL7C6AvIu6VtAGYFRG3S1oMPAEsBeYBzwOfiIgPJe0DbgV+CDwLbI6InZJuBj4dEV+T1AZcExFfkjQb6AQKQAAHgCURcex0x+r7NMzMKjcZ92msAbam7a3A2pL4kxHRHxGvA93AUklzgZkRsSeKmeqRYWUG69oOrEhXIauAjojoS4miA1g9jmM2M7NxyJo0Avi+pAOS1qfY+RFxFCA9z0nx+cCbJWWPpNj8tD08PqRMRAwA7wLnlqlrCEnrJXVK6uzt7c3YJDMzq1TWKbefjYi3JM0BOiT9pMy+GiEWZeJjLXMqELEF2ALF7qkyx2ZmZuOQ6UojIt5Kzz3A0xTHK95OXU6k5560+xHggpLiC4C3UnzBCPEhZSQ1AecAfWXqMjOzHIyaNCSdLWnG4DawEngF2AEMzmZqB55J2zuAtjQj6mJgEbAvdWEdl7Q8jVfcMKzMYF3XAi+kcY/ngJWSZqXZWStTzMzMcpCle+p84Ok0O7YJeDwi/qek/cA2SeuAw8B1ABFxUNI24FVgALglIj5Mdd0EPAycCexMD4AHgUcldVO8wmhLdfVJugfYn/a7OyL6xtFeMzMbBy+NbmZmXhrdzMyqz0nDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMsucNCSdIelFSX+XXs+W1CGpKz3PKtl3o6RuSYckrSqJL5H0cvrZZklK8WZJT6X4XkkLS8q0p/foktRejUabmdnYVHKlcSvwWsnrDcCuiFgE7EqvkbQYaAMuBVYD35F0RipzP7AeWJQeq1N8HXAsIj4OfAu4L9U1G7gLWAYsBe4qTU5mZja5MiUNSQuALwDfLQmvAbam7a3A2pL4kxHRHxGvA93AUklzgZkRsSciAnhkWJnBurYDK9JVyCqgIyL6IuIY0MGpRGNmZpMs65XGXwK3ASdLYudHxFGA9DwnxecDb5bsdyTF5qft4fEhZSJiAHgXOLdMXWZmloNRk4akPwJ6IuJAxjo1QizKxMdapvQY10vqlNTZ29ub8TDNzKxSWa40PgtcLekN4Eng85IeA95OXU6k5560/xHggpLyC4C3UnzBCPEhZSQ1AecAfWXqGiIitkREISIKra2tGZpkZmZjMWrSiIiNEbEgIhZSHOB+ISL+BNgBDM5mageeSds7gLY0I+piigPe+1IX1nFJy9N4xQ3DygzWdW16jwCeA1ZKmpUGwFemmJmZ5aBpHGXvBbZJWgccBq4DiIiDkrYBrwIDwC0R8WEqcxPwMHAmsDM9AB4EHpXUTfEKoy3V1SfpHmB/2u/uiOgbxzGbmdk4qPiBvnEUCoXo7OzM+zDMzOqKpAMRURhtP98RbmbWAHreO8EXH9hDz/ETE/o+ThpmZg1g864u9r/Rx+bnuyb0fcYzpmFmZjm75M6d9A+cuoXusb2HeWzvYZqbpnFo01VVfz9faZiZ1bHdt13J1ZfPo2V68b/zlunTWHP5PHbffuWEvJ+ThplZHZszs4UZzU30D5ykuWka/QMnmdHcxJwZLRPyfu6eMjOrc++838/1yy7iy0sv5PF9h+mdwMFwT7k1MzNPuTUzs+pz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy2zUpCGpRdI+ST+WdFDSf07x2ZI6JHWl51klZTZK6pZ0SNKqkvgSSS+nn22WpBRvlvRUiu+VtLCkTHt6jy5J7dVsvJmZVSbLlUY/8PmI+B3gcmC1pOXABmBXRCwCdqXXSFoMtAGXAquB70g6I9V1P7AeWJQeq1N8HXAsIj4OfAu4L9U1G7gLWAYsBe4qTU5mZja5Rk0aUfR+ejk9PQJYA2xN8a3A2rS9BngyIvoj4nWgG1gqaS4wMyL2RPE7Zh8ZVmawru3AinQVsgroiIi+iDgGdHAq0ZiZ2STLNKYh6QxJLwE9FP8T3wucHxFHAdLznLT7fODNkuJHUmx+2h4eH1ImIgaAd4Fzy9RlZmY5yJQ0IuLDiLgcWEDxquGyMrtrpCrKxMda5tQbSusldUrq7O3tLXNoZmY2HhXNnoqIXwE/oNhF9HbqciI996TdjgAXlBRbALyV4gtGiA8pI6kJOAfoK1PX8OPaEhGFiCi0trZW0iQzM6tAltlTrZI+mrbPBP4A+AmwAxiczdQOPJO2dwBtaUbUxRQHvPelLqzjkpan8YobhpUZrOta4IU07vEcsFLSrDQAvjLFzMwsB00Z9pkLbE0zoKYB2yLi7yTtAbZJWgccBq4DiIiDkrYBrwIDwC0R8WGq6ybgYeBMYGd6ADwIPCqpm+IVRluqq0/SPcD+tN/dEdE3ngabmdnYqfiBvnEUCoXo7OzM+zDMzOqKpAMRURhtP98RbmZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmdWwnvdO8MUH9tBz/ETehwI4aZiZ1bTNu7rY/0Yfm5/vyvtQAGjK+wDMzOw3XXLnTvoHTv7L68f2HuaxvYdpbprGoU1X5XZcvtIwM6tBu2+7kqsvn0fL9OJ/0y3Tp7Hm8nnsvv3KXI/LScPMrAbNmdnCjOYm+gdO0tw0jf6Bk8xobmLOjJZcj8vdU2ZmNeqd9/u5ftlFfHnphTy+7zC9NTAYrogov4N0AfAI8DHgJLAlIv5K0mzgKWAh8AbwxYg4lspsBNYBHwJ/GhHPpfgS4GHgTOBZ4NaICEnN6T2WAP8P+FJEvJHKtAN3psPZFBFbyx1voVCIzs7O7P8CZmaGpAMRURhtvyzdUwPAf4yITwLLgVskLQY2ALsiYhGwK70m/awNuBRYDXxH0hmprvuB9cCi9Fid4uuAYxHxceBbwH2prtnAXcAyYClwl6RZGY7ZzMwmwKhJIyKORsSP0vZx4DVgPrAGGPzUvxVYm7bXAE9GRH9EvA50A0slzQVmRsSeKF7ePDKszGBd24EVkgSsAjoioi9dxXRwKtGYmdkkq2ggXNJC4ApgL3B+RByFYmIB5qTd5gNvlhQ7kmLz0/bw+JAyETEAvAucW6YuMzPLQeakIem3gP8BfCMi3iu36wixKBMfa5nSY1svqVNSZ29vb5lDMzOz8ciUNCRNp5gwvhcRf5PCb6cuJ9JzT4ofAS4oKb4AeCvFF4wQH1JGUhNwDtBXpq4hImJLRBQiotDa2pqlSWZmNgajJo00tvAg8FpE/NeSH+0A2tN2O/BMSbxNUrOkiykOeO9LXVjHJS1Pdd4wrMxgXdcCL6Rxj+eAlZJmpQHwlSlmZmY5yDLl9nPAbuBlilNuAb5JcVxjG3AhcBi4LiL6Upk7gBspzrz6RkTsTPECp6bc7gS+nqbctgCPUhwv6QPaIuJnqcyN6f0A/jwiHhrleHuBn4/wo/OAd8o2tj40SjvAbalFjdIOcFsqdVFEjNpVM2rSaBSSOrPMQa51jdIOcFtqUaO0A9yWieJlRMzMLDMnDTMzy2wqJY0teR9AlTRKO8BtqUWN0g5wWybElBnTMDOz8ZtKVxpmZjZOdZs0JP21pB5Jr5TEfkfSHkkvS/pbSTNT/COSHkrxH0v6/ZIyS1K8W9LmdA9JvbblB5IOSXopPeaM8HYT2Y4LJP0vSa9JOijp1hSfLalDUld6nlVSZmP6tz8kaVVJPNfzUuW25HZeKm2HpHPT/u9L+vawuurqnIzSlrr6W5H0h5IOpH//A5I+X1LX5J6XiKjLB/B7wGeAV0pi+4F/k7ZvBO5J27cAD6XtOcABYFp6vQ/4XYpLluwErqrjtvwAKOR4TuYCn0nbM4B/AhYDfwFsSPENwH1pezHwY6AZuBj4KXBGLZyXKrclt/MyhnacDXwO+Brw7WF11ds5KdeWevtbuQKYl7YvA36R13mp2yuNiPgHijcClroE+Ie03QH8cdpeTHH5diKiB/gVUFD5lXcnTTXaMgmHOaqYnBWRJ0W12jKZxzySStsREb+OiP8NDPm2n3o8J6drSy0YQ1tejIjBJZQOAi0qrrox6eelbpPGabwCXJ22r+PUulU/BtZIalJxaZMl6WflVt7NW6VtGfRQutz+T5PdfVBKE7ci8qQbZ1sG5X5eMrbjdOrxnIwm93MCY2rLHwMvRkQ/OZyXRksaN1L8kqgDFC/5/jnF/5riP2Yn8JfA/6W4xEmmVXRzUmlbAK6PiE8B/zo9vjKpR5xoYldEnlRVaAvUwHmpoB2nrWKEWK2fk3JyPydQeVskXUrxS+q+OhgaYbcJPS8NlTQi4icRsTIilgBPUOxXJiIGIuLPIuLyiFgDfBToovzKu7kaQ1uIiF+k5+PA4+TQPaKJXxF50lSpLbmflwrbcTr1eE5OK+9zApW3RdIC4Gnghoj4aQpP+nlpqKQxOANC0jSK3yv+39LrsySdnbb/EBiIiFej/Mq7uaq0Lam76rwUnw78EcUursk85slYEXlSVKsteZ+XMbRjRHV6Tk5XT939rUj6KPD3wMaI+D+DO+dyXiZylH0iHxQ/fR8FPqCYbdcBt1KchfBPwL2cunlxIXCI4mDT8xRXcxysp0DxF+anwLcHy9RbWyjOFDkA/CPFgbK/Is3emcR2fI7ipfE/Ai+lx7+l+C2MuyheEe0CZpeUuSP92x+iZNZH3uelWm3J+7yMsR1vUJyY8X76fVxcx+fkN9qS9zkZS1sofnD8dcm+LwFz8jgvviPczMwya6juKTMzm1hOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZ/X+iAsdYpH8kLgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.plot(style='*')"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2020 221186\n",
"2021 376290\n",
"2002 516689\n",
"2018 542312\n",
"2017 551041\n",
"1991 553090\n",
"1996 564901\n",
"2019 584066\n",
"2015 604382\n",
"2000 617597\n",
"2001 619041\n",
"2012 624573\n",
"2005 628464\n",
"2006 632833\n",
"2011 642368\n",
"1993 643387\n",
"1995 652478\n",
"1994 661409\n",
"1998 677775\n",
"1997 683434\n",
"2014 685769\n",
"2013 698332\n",
"2007 717352\n",
"2008 749478\n",
"1999 756456\n",
"2003 758363\n",
"2004 777388\n",
"2016 782114\n",
"2010 829911\n",
"1992 832939\n",
"2009 842373\n",
"dtype: int64"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"yearly_incidence.sort_values()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
...
...
@@ -16,10 +1228,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.
3
"
"version": "3.6.
4
"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment