Delete toy_document_orgmode_python_fr.org

parent b35ad15f
#+TITLE: À propos du calcul de $\pi$
#+AUTHOR: Laydevant Jérémie
#+DATE: 20/05/2022
#+LANGUAGE: fr
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
#+HTML_HEAD: <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
#+PROPERTY: header-args :session :exports both
* En demandant à la lib maths
Mon ordinateur m'indique que π vaut /approximativement/:
#+begin_src python :results value :session *python* :exports both
from math import *
pi
#+end_src
#+RESULTS:
## 2 En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la *méthode* des [[https://fr.wikipedia.org/wiki/Aiguille_de_Buffon][aiguilles de Buffon]], on obtiendrait Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :
comme *approximation* :
#+begin_src python :results value :session *python* :exports both
import numpy as np
np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=pi/2)
2/(sum((x+np.sin(theta))>1)/N)
#+end_src
#+RESULTS:
* 3 Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :
intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim
U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [[https://fr.wikipedia.org/wiki/M%25C3%25A9thode_de_Monte-Carlo#D%25C3%25A9termination_de_la_valeur_de_%25CF%2580][méthode de
Monte Carlo sur Wikipedia]]). Le code suivant illustre ce fait :
#+begin_src python :results output file :var matplot_lib_filename="figure_pi_mc2.png" :exports both :session *python*
import matplotlib.pyplot as plt
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename)
print(matplot_lib_filename)
#+end_src
#+RESULTS:
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en
comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
#+begin_src python :results output :session *python* :exports both #+begin_src python :results output :session :exports both
4*np.mean(accept)
#+end_src #+end_src
#+RESULTS:
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment