Commit f50708e3 authored by Milèna CHABERT's avatar Milèna CHABERT

Adaptation à la correction

parent a08748a2
...@@ -5,8 +5,8 @@ date: "25 juin 2018" ...@@ -5,8 +5,8 @@ date: "25 juin 2018"
output: html_document output: html_document
--- ---
```{r setup, include=FALSE} ```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(echo = TRUE)
``` ```
## En demandant à la lib maths ## En demandant à la lib maths
...@@ -17,7 +17,7 @@ pi ...@@ -17,7 +17,7 @@ pi
``` ```
## En utilisant la méthode des aiguilles de Buffon ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la _méthode_ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme _approximation_ : Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -28,7 +28,7 @@ theta = pi/2*runif(N) ...@@ -28,7 +28,7 @@ theta = pi/2*runif(N)
``` ```
## Avec un argument "fréquentiel" de surface ## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia])(https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia])(https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -42,6 +42,7 @@ ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + t ...@@ -42,6 +42,7 @@ ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + t
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
````{r} ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
``` ```
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment