Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
b9bf6d21d8eca4479a89acdbe13a45c9
mooc-rr
Commits
062aba89
Commit
062aba89
authored
Nov 01, 2025
by
b9bf6d21d8eca4479a89acdbe13a45c9
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
no commit message
parent
f4cc151d
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1 addition
and
38 deletions
+1
-38
toy_notebook_fr.ipynb
module2/exo1/toy_notebook_fr.ipynb
+1
-38
No files found.
module2/exo1/toy_notebook_fr.ipynb
View file @
062aba89
...
@@ -6,44 +6,7 @@
...
@@ -6,44 +6,7 @@
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
"À propos du calcul de pi\n",
" "
"Arnaud Legrand\n",
"25 juin 2018\n",
"En demandant à la lib maths\n",
"Mon ordinateur m’indique que π\n",
" vaut approximativement\n",
"\n",
"pi\n",
"## [1] 3.141593\n",
"En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :\n",
"\n",
"set.seed(42)\n",
"N = 100000\n",
"x = runif(N)\n",
"theta = pi/2*runif(N)\n",
"2/(mean(x+sin(theta)>1))\n",
"## [1] 3.14327\n",
"Avec un argument “fréquentiel” de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1)\n",
" et Y∼U(0,1)\n",
" alors P[X2+Y2≤1]=π/4\n",
" (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait:\n",
"\n",
"set.seed(42)\n",
"N = 1000\n",
"df = data.frame(X = runif(N), Y = runif(N))\n",
"df$Accept = (df$X**2 + df$Y**2 <=1)\n",
"library(ggplot2)\n",
"ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()\n",
"\n",
"\n",
"Il est alors aisé d’obtenir une approximation (pas terrible) de π\n",
" en comptant combien de fois, en moyenne, X2+Y2\n",
" est inférieur à 1:\n",
"\n",
"4*mean(df$Accept)\n",
"## [1] 3.156"
]
]
}
}
],
],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment