"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :\n"
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :\n"
]
},
{
...
...
@@ -103,7 +103,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P[X^2 + $Y^2$ ≤ 1] = $\\pi$ /4 [(voir méthode de Monte Carlo sur Wikipedia)](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :"
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P[$X^2 + Y^2$ ≤ 1] = $\\pi$ /4 [(voir méthode de Monte Carlo sur Wikipedia)](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :"
]
},
{
...
...
@@ -140,6 +140,34 @@
"ax.set_aspect('equal')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$\n",