Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
c8c97f9cb8c3a20740b5dc4b6225c706
mooc-rr
Commits
2bbe021d
Commit
2bbe021d
authored
Apr 10, 2020
by
c8c97f9cb8c3a20740b5dc4b6225c706
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update toy_document_fr.Rmd
parent
b85c0eed
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
4 deletions
+4
-4
toy_document_fr.Rmd
module2/exo1/toy_document_fr.Rmd
+4
-4
No files found.
module2/exo1/toy_document_fr.Rmd
View file @
2bbe021d
...
...
@@ -12,13 +12,13 @@ knitr::opts_chunk$set(echo = TRUE)
## En demandant à l'ordinateur
Mon ordinateur m’indique que $\pi$ vaut approximativement
```
```
{r}
pi
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```
```
{r}
set.seed(42)
N = 100000
x = runif(N)
...
...
@@ -33,7 +33,7 @@ Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’a
alors $P[X^2+Y^2 \le 1]= \pi/4$
(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)).
Le code suivant illustre ce fait:
```
```
{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
...
...
@@ -45,6 +45,6 @@ ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + t
Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$
en comptant combien de fois, en moyenne, $X^2+Y^2$
est inférieur à 1:
```
```
{r}
4*mean(df$Accept)
```
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment