Update toy_document_fr.Rmd

parent 808e55ba
......@@ -5,18 +5,22 @@ date: "25 juin 2018"
output: html_document
---
# En demandant à la lib maths
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
Mon ordinateur m’indique que $\pi$ vaut approximativement
## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut approximativement
```{r}
```{r cars}
pi
```
# En utilisant la méthode des aiguilles de Buffon
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r}
set.seed(42)
......@@ -25,10 +29,10 @@ x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
# Avec un argument “fréquentiel” de surface
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X~U(0,1)$ et
$Y~U(0,1)$ alors $P[X^{2} + Y^{2} \le 1]= \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\simU(0,1)$ et
$Y\simU(0,1)$ alors $P[X^2 + Y^2 \leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r}
set.seed(42)
......@@ -37,9 +41,10 @@ df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X^{2} + Y^{2}$ est inférieur à 1:
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
4*mean(df$Accept)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment