Update exercice_fr.Rmd

parent 579f3805
---
title: "Votre titre"
author: "Votre nom"
date: "La date du jour"
output: html_document
title: "Analyse de l'incidence de la varicelle"
author: "Konrad Hinsen"
output:
pdf_document:
toc: true
html_document:
toc: true
theme: journal
documentclass: article
classoption: a4paper
header-includes:
- \usepackage[french]{babel}
- \usepackage[upright]{fourier}
- \hypersetup{colorlinks=true,pagebackref=true}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications
## Préparation des données
Les données de l'incidence de la varicelle sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). S'il n'existe pas de fichier local pour les données (une copie doit être conservée pour la traçabilité), nous les récupérons en local sous forme de tableau CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet en local, qui commence en 1984 et se termine avec une semaine récente. Nous lisons ce jeu de données dans un second temps.
```{r}
if(!file.exists("./inc-Varicelle-PAY.csv")){
data_url = "http://www.sentiweb.fr/datasets/all/inc-7-PAY.csv"
download.file(data_url, "./inc-Varicelle-PAY.csv")
}
```
La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skip=1`.
### Téléchargement
```{r}
data = read.csv("./inc-Varicelle-PAY.csv", skip=1)
```
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>.
Regardons ce que nous avons obtenu:
```{r}
head(data)
tail(data)
```
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante:
Y a-t-il des points manquants dans nos données ? Non :
```{r}
na_records = apply(data, 1, function (x) any(is.na(x)))
data[na_records,]
```
```{r cars}
summary(cars)
Les deux colonnes qui nous intéressent sont `week` et `inc`. Vérifions leurs classes:
```{r}
class(data$week)
class(data$inc)
```
Ce sont des entiers, tout va bien !
### Conversion des numéros de semaine
Et on peut aussi aisément inclure des figures. Par exemple:
La gestion des dates est toujours un sujet délicat. Il y a un grand nombre de conventions différentes qu'il ne faut pas confondre. Notre jeux de données utilise un format que peu de logiciels savent traiter: les semaines en format [ISO-8601](https://en.wikipedia.org/wiki/ISO_8601). En `R`, il est géré par la bibliothèque [parsedate](https://cran.r-project.org/package=parsedate):
```{r pressure, echo=FALSE}
plot(pressure)
```{r}
library(parsedate)
```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles.
Pour faciliter le traitement suivant, nous remplaçons ces semaines par les dates qui correspondent aux lundis. Voici une petite fonction qui fait la conversion pour une seule valeur:
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
```{r}
convert_week = function(w) {
ws = paste(w)
iso = paste0(substring(ws, 1, 4), "-W", substring(ws, 5, 6))
as.character(parse_iso_8601(iso))
}
```
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
Nous appliquons cette fonction à tous les points, créant une nouvelle colonne `date` dans notre jeu de données:
```{r}
data$date = as.Date(convert_week(data$week))
```
Vérifions qu'elle est de classe `Date`:
```{r}
class(data$date)
```
Les points sont dans l'ordre chronologique inverse, il est donc utile de les trier:
```{r}
data = data[order(data$date),]
```
C'est l'occasion pour faire une vérification: nos dates doivent être séparées d'exactement sept jours:
```{r}
all(diff(data$date) == 7)
```
### Inspection
Regardons enfin à quoi ressemblent nos données !
```{r}
plot(data$date, data$inc, type="l", xlab="Date", ylab="Incidence hebdomadaire")
```
Un zoom sur les dernières années montre mieux la localisation des pics en hiver. Le creux des incidences se trouve en été.
```{r}
with(tail(data, 200), plot(date, inc, type="l", xlab="Date", ylab="Incidence hebdomadaire"))
```
## L'incidence annuelle
### Calcul
Étant donné que le pic de l'épidémie se situe en hiver, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er septembre de l'année $N$ au 1er septembre de l'année $N+1$. Nous mettons l'année $N+1$ comme étiquette sur cette année décalée, car le pic de l'épidémie est toujours au début de l'année $N+1$. Comme l'incidence de syndrome grippal est très faible en été, cette modification ne risque pas de fausser nos conclusions.
L'argument `na.rm=True` dans la sommation précise qu'il faut supprimer les points manquants. Ce choix est raisonnable car il n'y a qu'un seul point manquant, dont l'impact ne peut pas être très fort.
```{r}
pic_annuel = function(annee) {
debut = paste0(annee-1,"-09-01")
fin = paste0(annee,"-09-01")
semaines = data$date > debut & data$date <= fin
sum(data$inc[semaines], na.rm=TRUE)
}
```
Nous devons aussi faire attention aux premières et dernières années de notre jeux de données. Les données commencent en décembre 1990, ce qui ne permet pas de quantifier complètement le pic attribué à 1991. Nous l'enlevons donc de notre analyse. Par contre, pour une exécution en octobre 2024, les données se terminent après le 1er septembre 2024, ce qui nous permet d'inclure cette année.
```{r}
annees = 1991:2024
```
Nous créons un nouveau jeu de données pour l'incidence annuelle, en applicant la fonction `pic_annuel` à chaque année:
```{r}
inc_annuelle = data.frame(annee = annees,
incidence = sapply(annees, pic_annuel))
head(inc_annuelle)
```
### Inspection
Voici les incidences annuelles en graphique:
```{r}
plot(inc_annuelle, type="p", xlab="Année", ylab="Incidence annuelle")
```
### Identification des épidémies les plus fortes
Une liste triée par ordre décroissant d'incidence annuelle permet de plus facilement repérer les valeurs les plus élevées:
```{r}
head(inc_annuelle[order(-inc_annuelle$incidence),])
tail(inc_annuelle[order(-inc_annuelle$incidence),])
```
Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population française, sont assez rares: il y en eu trois au cours des 35 dernières années.
```{r}
hist(inc_annuelle$incidence, breaks=10, xlab="Incidence annuelle", ylab="Nb d'observations", main="")
```
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment