Update toy_document_orgmode_R_fr.org

parent 1bb193ea
#+TITLE:À propos du calcul de /π/ #+TITLE:À propos du calcul de $\pi$
#+AUTHOR: Matthieu Bougueon #+LANGUAGE: fr
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/> #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/> #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="http://www.pirilampo.org/styles/readtheorg/css/readtheorg.css"/>
...@@ -7,11 +7,11 @@ ...@@ -7,11 +7,11 @@
#+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script> #+HTML_HEAD: <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script> #+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script> #+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
#+LANGUAGE: en
* En demandant à la lib maths #+PROPERTY: header-args :session :exports both
Mon ordinateur m'indique que /π/ vaut /approximativement/
* En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut /approximativement/
#+begin_src R :results output :session *R* :exports both #+begin_src R :results output :session *R* :exports both
pi pi
...@@ -33,18 +33,15 @@ theta = pi/2*runif(N) ...@@ -33,18 +33,15 @@ theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
#+end_src #+end_src
#+RESULTS:
:
: [1] 3.14327
* Avec un argument "fréquentiel" de surface * Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas Sinon, une méthode plus simple à comprendre et ne faisant pas
intervenir d'appel à la fonction sinus se base sur le fait que si intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim
$X∼U(0,1) et $Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carlo U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [[https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80][méthode de Monte Carlo
sur Wikipedia]]). Le code suivant illustre ce fait : sur Wikipedia]]). Le code suivant illustre ce fait :
#+begin_src R :results output graphics :file (org-babel-temp-file "figure" ".png") :exports both :width 600 :height 400 :session *R* #+begin_src R :results output graphics :file figure_pi_mc1.png :exports both :width 600 :height 400 :session *R*
set.seed(42) set.seed(42)
N = 1000 N = 1000
df = data.frame(X = runif(N), Y = runif(N)) df = data.frame(X = runif(N), Y = runif(N))
...@@ -53,9 +50,16 @@ library(ggplot2) ...@@ -53,9 +50,16 @@ library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
#+end_src #+end_src
Il est alors aisé d'obtenir une approximation (pas terrible) de π en #+RESULTS:
comptant combien de fois, en moyenne, X2+Y2 est inférieur à 1 : [[file:figure_pi_mc1.png]]
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en
comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
#+begin_src R :results output :session *R* :exports both #+begin_src R :results output :session *R* :exports both
4*mean(df$Accept) 4*mean(df$Accept)
#+end_src #+end_src
#+RESULTS:
: [1] 3.156
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment