apostrophes corrected

parent 317beddd
......@@ -69,7 +69,7 @@
"source": [
"## Avec un argument \"fréquentiel\" de surface\n",
"\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir dappel à la fonction sinus se base sur le fait que si $X\\sim U(0, 1)$ et $Y\\sim U(0, 1)$ alors $P[X^2 + Y^2 \\leq 1] = \\pi/4$ [(voir méthode de Monte Carlo sur Wikipedia)](\\https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :"
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0, 1)$ et $Y\\sim U(0, 1)$ alors $P[X^2 + Y^2 \\leq 1] = \\pi/4$ [(voir méthode de Monte Carlo sur Wikipedia)](\\https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :"
]
},
{
......@@ -109,7 +109,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé dobtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :"
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :"
]
},
{
......@@ -131,13 +131,6 @@
"source": [
"4*np.mean(accept)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment