done

parent 46b292ad
......@@ -18,7 +18,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# On the computation of $\\pi$"
"# On the computation of $\\pi$"
]
},
{
......@@ -90,7 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"metadata": {},
"outputs": [
{
......@@ -109,12 +109,15 @@
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
......@@ -125,9 +128,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how\n",
"many times, on average, $$X^2$ + $Y^2$$\n",
"is smaller than 1:"
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $$X^2$ + $Y^2$$ is smaller than 1:"
]
},
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment