Commit ca5f3e54 authored by Brahima DIARRA's avatar Brahima DIARRA

Correction de l'exercice 1 sur RStudio

parent 0af6ecb4
--- ---
title: "Votre titre" title: "À propos du calcul de pi"
author: "Brahima DIARRA" author: "Arnaud Legrand"
date: "La date du jour" date: "25 juin 2018"
output: html_document output:
pdf_document: default
html_document: default
--- ---
# En demandant à la lib maths
```{r setup, include=FALSE} Mon ordinateur m'indique que $\pi$ vaut approximativement
knitr::opts_chunk$set(echo = TRUE)
```
## Quelques explications ```{r}
pi
```
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>. # En utilisant la méthode des aiguilles de Buffon
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r cars} ```{r}
summary(cars) set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
``` ```
Et on peut aussi aisément inclure des figures. Par exemple: # Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2 + Y^2 \le 1] = \frac{\pi}{4}$ (voir [méthode de Monte Carlo sur wikipédia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo)). Le code suivant illustre ce fait:
```{r message=FALSE, warning = FALSE}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```{r pressure, echo=FALSE}
plot(pressure)
``` ```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1:
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. ```{r}
4*mean(df$Accept)
```
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment