Commit a9236df9 authored by hakimouaras's avatar hakimouaras

Corrections

parent 6e9c9781
......@@ -18,26 +18,26 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## À propos du calcul de $\\pi$ "
"# À propos du calcul de $\\pi$ "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### En demandant à la lib maths"
"## En demandant à la lib maths"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mon ordinateur m’indique que $\\pi$ vaut approximativement"
"Mon ordinateur m’indique que $\\pi$ vaut *approximativement*"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 9,
"metadata": {},
"outputs": [
{
......@@ -49,7 +49,7 @@
}
],
"source": [
"from math import * \n",
"from math import *\n",
"print(pi)"
]
},
......@@ -57,7 +57,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### En utilisant la méthode des aiguilles de Buffon "
"## En utilisant la méthode des aiguilles de Buffon "
]
},
{
......@@ -69,7 +69,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 10,
"metadata": {
"scrolled": true
},
......@@ -80,17 +80,17 @@
"3.128911138923655"
]
},
"execution_count": 6,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np \n",
"np.random.seed(seed=42) \n",
"N = 10000 \n",
"x = np.random.uniform(size=N, low=0, high=1) \n",
"theta = np.random.uniform(size=N, low=0, high=pi/2) \n",
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
......@@ -98,7 +98,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Avec un argument \"fréquentiel\" de surface "
"## Avec un argument \"fréquentiel\" de surface "
]
},
{
......@@ -113,7 +113,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 11,
"metadata": {},
"outputs": [
{
......@@ -130,19 +130,19 @@
}
],
"source": [
"%matplotlib inline \n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42) \n",
"N = 1000 \n",
"x = np.random.uniform(size=N, low=0, high=1) \n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"accept = (x*x+y*y) <= 1 \n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1) \n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None) \n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None) \n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')"
]
},
......@@ -156,7 +156,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 12,
"metadata": {
"scrolled": true
},
......@@ -167,7 +167,7 @@
"3.112"
]
},
"execution_count": 8,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment