exercice1_firstTry

parent 54708c64
This diff is collapsed.
{
"cells": [],
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"14.113000000000001\n",
"4.334094455301447\n",
"2.8\n",
"23.4\n",
"14.5\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"donnees = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n",
"\n",
"moyenne = np.mean(donnees, 0)\n",
"ecart_type = np.std(donnees, 0, ddof = 1)\n",
"minimum = np.min(donnees)\n",
"maximum = np.max(donnees)\n",
"mediane = np.median(donnees, 0)\n",
"print(moyenne)\n",
"print(ecart_type)\n",
"print(minimum)\n",
"print(maximum)\n",
"print(mediane)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
......@@ -16,10 +58,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
This diff is collapsed.
......@@ -705,7 +705,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
"version": "3.6.4"
}
},
"nbformat": 4,
......
......@@ -9,7 +9,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
......@@ -28,15 +28,26 @@
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import urllib\n",
"csv_file = \"fichier_symptomes_gripaux.csv\"\n",
"if not os.path.exists(csv_file):\n",
" urllib.request.urlretrieve(data_url, csv_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -65,7 +76,9 @@
"metadata": {},
"outputs": [],
"source": [
"raw_data = pd.read_csv(data_url, skiprows=1)\n",
"csv_file = \"fichier_symptomes_gripaux.csv\"\n",
"if os.path.exist(csv_file):\n",
"raw_data = pd.read_csv(csv_file, skiprows=1) \n",
"raw_data"
]
},
......@@ -153,9 +166,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
......@@ -253,9 +264,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
......@@ -341,9 +350,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": []
}
......@@ -364,7 +371,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
"version": "3.6.4"
}
},
"nbformat": 4,
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment