Dernières modifications ?

parent a6768397
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## En demandant à la lib maths\n", "## En demandant à la lib maths\n",
"Mon ordinateur mindique que $\\pi$ vaut *approximativement*" "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
] ]
}, },
{ {
...@@ -42,7 +42,7 @@ ...@@ -42,7 +42,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## En utilisant la méthode des aiguilles de Buffon\n", "## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffonb), on obtiendrait comme __approximation__:" "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__:"
] ]
}, },
{ {
...@@ -75,7 +75,7 @@ ...@@ -75,7 +75,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Avec un argument \"fréquentiel\" de surface\n", "## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
] ]
}, },
{ {
...@@ -97,7 +97,7 @@ ...@@ -97,7 +97,7 @@
} }
], ],
"source": [ "source": [
"%matplotlib inline\n", "%matplotlib inline \n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"\n", "\n",
"np.random.seed(seed=42)\n", "np.random.seed(seed=42)\n",
...@@ -118,8 +118,7 @@ ...@@ -118,8 +118,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"Il est alors aisé d’obtenir une approximation (pas terrible) de p en comptant combien de fois,\n", "Il est alors aisé d’obtenir une approximation (pas terrible) de p en comptant combien de fois, en moyenne, $X^2 +Y^2$ est inférieur à 1 :"
"en moyenne, $X^2 +Y^2$ est inférieur à 1 :"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment