"Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
]
]
},
},
...
@@ -36,7 +32,7 @@
...
@@ -36,7 +32,7 @@
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
"source": [
"source": [
"### 1.2 En utilisant la méthode des aiguilles de Buffon\n",
"## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:"
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:"
"### 1.3 Avec un argument \"fréquentiel\" de surface\n",
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $\\X sim U(0,1)$ et $\\Y sim U(0,1)$ alors $\\P[X^2+Y^2 le 1] = pi/4$ (voir [Méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait:"
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2+Y^2 \\le 1] = \\pi/4$ (voir [Méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait:"