Make it more similar to the example...

parent e18a46cf
...@@ -12,13 +12,12 @@ ...@@ -12,13 +12,12 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Asking the maths library\n", "## Asking the maths library\n",
"\n",
"My computer tells me that $\\pi$ is *approximatively*" "My computer tells me that $\\pi$ is *approximatively*"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -38,13 +37,13 @@ ...@@ -38,13 +37,13 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Buffons needle\n", "## Buffon's needle\n",
"Applying the method of [Buffons needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -53,7 +52,7 @@ ...@@ -53,7 +52,7 @@
"3.128911138923655" "3.128911138923655"
] ]
}, },
"execution_count": 2, "execution_count": 8,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -72,12 +71,12 @@ ...@@ -72,12 +71,12 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Using a surface fraction argument\n", "## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0, 1)$ and $Y \\sim U(0, 1)$, then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0, 1)$ and $Y\\sim U(0, 1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -120,7 +119,7 @@ ...@@ -120,7 +119,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 10,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -129,7 +128,7 @@ ...@@ -129,7 +128,7 @@
"3.112" "3.112"
] ]
}, },
"execution_count": 4, "execution_count": 10,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment