"My computer tells me that $\\pi$ is *approximatively*"
"My computer tells me that $\\pi$ is *approximatively*"
]
]
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1,
"execution_count": 7,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -38,13 +37,13 @@
...
@@ -38,13 +37,13 @@
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
"source": [
"source": [
"## Buffon’s needle\n",
"## Buffon's needle\n",
"Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
"Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__"
]
]
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2,
"execution_count": 8,
"metadata": {},
"metadata": {},
"outputs": [
"outputs": [
{
{
...
@@ -53,7 +52,7 @@
...
@@ -53,7 +52,7 @@
"3.128911138923655"
"3.128911138923655"
]
]
},
},
"execution_count": 2,
"execution_count": 8,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -72,12 +71,12 @@
...
@@ -72,12 +71,12 @@
"metadata": {},
"metadata": {},
"source": [
"source": [
"## Using a surface fraction argument\n",
"## Using a surface fraction argument\n",
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0, 1)$ and $Y \\sim U(0, 1)$, then $P[X^2 + Y^2 \\le 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
"A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0, 1)$ and $Y\\sim U(0, 1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"