Update toy_document_fr.Rmd

parent 2c7917ee
...@@ -11,14 +11,15 @@ knitr::opts_chunk$set(echo = TRUE) ...@@ -11,14 +11,15 @@ knitr::opts_chunk$set(echo = TRUE)
``` ```
## En demandant à la lib maths ## En demandant à la lib maths
Mon ordinateur m’indique que $\pi$ vaut *approximativement* Mon ordinateur m’indique que $\pi$ vaut *approximativement*
```{r cars} ```{r cars}
pi pi
``` ```
## En utilisant la méthode des aiguilles de Buffon ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```{r} ```{r}
set.seed(42) set.seed(42)
N = 100000 N = 100000
...@@ -26,8 +27,10 @@ x = runif(N) ...@@ -26,8 +27,10 @@ x = runif(N)
theta = pi/2*runif(N) theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
``` ```
## Avec un argument “fréquentiel” de surface ## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ voir [voir méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait : Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ voir (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :
``` {r} ``` {r}
set.seed(42) set.seed(42)
N = 1000 N = 1000
...@@ -37,7 +40,6 @@ library(ggplot2) ...@@ -37,7 +40,6 @@ library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d'obtenir une approximation (pas terrible) de $/pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : Il est alors aisé d'obtenir une approximation (pas terrible) de $/pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
``` {r} ``` {r}
4*mean(df$Accept) 4*mean(df$Accept)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment