Commit 767d057f authored by Valerie COGNAT's avatar Valerie COGNAT

update lib

parent f944ec7b
...@@ -12,18 +12,14 @@ knitr::opts_chunk$set(echo = TRUE) ...@@ -12,18 +12,14 @@ knitr::opts_chunk$set(echo = TRUE)
```{r libraries, echo=FALSE, warning=FALSE, message=FALSE} ```{r libraries, echo=FALSE, warning=FALSE, message=FALSE}
library(plyr) # help for data manipulation
library(dplyr) # help splitting, applying and combining data
library(data.table) # extension to data.frame format, optimized for huge datasets library(data.table) # extension to data.frame format, optimized for huge datasets
library(ggplot2) # The grammar of graphics, it improves the quality and aesthetic of your graphs library(ggplot2) # for graphics
library(DT)
library(plotly) library(plotly)
library(RColorBrewer) # package with pre-defined color palette
``` ```
## Récupération des données ## Récupération des données
Le fichier est téléchargé à partir de l'url puis lu via la fonction fread pour avoir un objet data.table. Le nom des colonnes est vérifié pour remplacer les caractères spéciaux par des ".". Le fichier est téléchargé à partir de l'url [https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv](https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv) puis lu via la fonction fread pour avoir un objet de type data.table afin de faire facilement des graphiques avec ggplot2. Le nom des colonnes est vérifié pour remplacer les caractères spéciaux par des ".".
```{r data_dwld} ```{r data_dwld}
url <- "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv" url <- "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv"
...@@ -43,7 +39,7 @@ On commence par réannoter les pays pour mieux extraire ceux d'intérêts : ...@@ -43,7 +39,7 @@ On commence par réannoter les pays pour mieux extraire ceux d'intérêts :
- la france hors DOM-TOM est renommée France Metropolitaine - la france hors DOM-TOM est renommée France Metropolitaine
- les colonies des pays bas sont renommées Netherlands, colonies - les colonies des pays bas sont renommées Netherlands, colonies
```{r} ```{r modify_country}
## change China to China, Hong Kong for Hong Kong ## change China to China, Hong Kong for Hong Kong
covid_data[covid_data$Country.Region == "China" & covid_data$Province.State == "Hong Kong", ]$Country.Region <- "China, Hong-Kong" covid_data[covid_data$Country.Region == "China" & covid_data$Province.State == "Hong Kong", ]$Country.Region <- "China, Hong-Kong"
...@@ -60,7 +56,7 @@ covid_data[covid_data$Country.Region == "United Kingdom" & covid_data$Province.S ...@@ -60,7 +56,7 @@ covid_data[covid_data$Country.Region == "United Kingdom" & covid_data$Province.S
### Creation d'un sous jeu de données pour analyse des pays d'intérêts ### Creation d'un sous jeu de données pour analyse des pays d'intérêts
Création d'un sous jeu de données avec les pays d'intérêts. Création d'un sous jeu de données avec les pays d'intérêts.
```{r} ```{r select_country}
## Filter only countries of interest ## Filter only countries of interest
covid.subset <- filter(covid_data, Country.Region %in% c("Belgium","China","China, Hong-Kong", "France","Germany","Iran","Italy", "Japan","Korea, South","Netherlands","Portugal","Spain", "United Kingdom", "US")) covid.subset <- filter(covid_data, Country.Region %in% c("Belgium","China","China, Hong-Kong", "France","Germany","Iran","Italy", "Japan","Korea, South","Netherlands","Portugal","Spain", "United Kingdom", "US"))
``` ```
...@@ -72,7 +68,7 @@ Ce sera plus facile et rapide pour l'utilisation de ggplot2 d'avoir tous les com ...@@ -72,7 +68,7 @@ Ce sera plus facile et rapide pour l'utilisation de ggplot2 d'avoir tous les com
Pour cela nous utilisons fonction melt. Pour cela nous utilisons fonction melt.
```{r} ```{r table_melt}
covid.subset <- melt(covid.subset , covid.subset <- melt(covid.subset ,
id.vars = c("Province.State", "Country.Region", "Lat", "Long"), id.vars = c("Province.State", "Country.Region", "Lat", "Long"),
variable.name = "Date", variable.name = "Date",
...@@ -85,7 +81,7 @@ covid.subset$Country.Region <- as.factor(covid.subset$Country.Region) ...@@ -85,7 +81,7 @@ covid.subset$Country.Region <- as.factor(covid.subset$Country.Region)
### Fusion des lignes pour un même pays ### Fusion des lignes pour un même pays
Afin de n'avoir qu'une valeur par pays, nous fusionnons les lignes Afin de n'avoir qu'une valeur par pays, nous fusionnons les lignes
```{r} ```{r sum_cases}
covid.byCountry <- covid.subset[, list(Case_number=sum(Case_number)),by=c("Country.Region","Date")] covid.byCountry <- covid.subset[, list(Case_number=sum(Case_number)),by=c("Country.Region","Date")]
``` ```
...@@ -93,8 +89,8 @@ covid.byCountry <- covid.subset[, list(Case_number=sum(Case_number)),by=c("Count ...@@ -93,8 +89,8 @@ covid.byCountry <- covid.subset[, list(Case_number=sum(Case_number)),by=c("Count
Représentation du nombre de cas cumulés par jour par pays. Représentation du nombre de cas cumulés par jour par pays.
```{r plot, echo=FALSE, fig.height=15, fig.width=12} ```{r plot, echo=FALSE, warning=FALSE, fig.height=12, fig.width=10}
ggplot(covid.byCountry, aes(x = as.Date(Date), y = Case_number, group = Country.Region)) + p <- ggplot(covid.byCountry, aes(x = as.Date(Date), y = Case_number, group = Country.Region)) +
geom_line(aes(color = Country.Region), size=1) + geom_line(aes(color = Country.Region), size=1) +
scale_color_manual(values = c("#00008B","#33a02c","#e31a1c","#8470FF","#FF7F24","#7A378B","#00688B","#FFF68F","#FF82AB","#5C5C5C","#87CEEB","#D9D9D9","#8B5A00","#9ACD32","#8EE5EE","#20B2AA","#FFF0F5","#FFFF00","#FFFFFF")) + scale_color_manual(values = c("#00008B","#33a02c","#e31a1c","#8470FF","#FF7F24","#7A378B","#00688B","#FFF68F","#FF82AB","#5C5C5C","#87CEEB","#D9D9D9","#8B5A00","#9ACD32","#8EE5EE","#20B2AA","#FFF0F5","#FFFF00","#FFFFFF")) +
scale_x_date(date_breaks = 'week') + scale_x_date(date_breaks = 'week') +
...@@ -104,12 +100,13 @@ ggplot(covid.byCountry, aes(x = as.Date(Date), y = Case_number, group = Country. ...@@ -104,12 +100,13 @@ ggplot(covid.byCountry, aes(x = as.Date(Date), y = Case_number, group = Country.
ggtitle("Number of Covid Cases by Country") + ggtitle("Number of Covid Cases by Country") +
xlab("Date") + xlab("Date") +
ylab("Number of cases") + labs(color = "Country") ylab("Number of cases") + labs(color = "Country")
#p
ggplotly(p)
``` ```
Reproduction du graphique en log10 : Reproduction du graphique en log10 :
```{r plot_log, echo=FALSE, fig.height=15, fig.width=12} ```{r plot_log, echo=FALSE, warning=FALSE, fig.height=12, fig.width=10}
ggplot(covid.byCountry, aes(x = as.Date(Date), y = Case_number, group = Country.Region)) + p <- ggplot(covid.byCountry, aes(x = as.Date(Date), y = Case_number, group = Country.Region)) +
geom_line(aes(color = Country.Region), size = 1) + geom_line(aes(color = Country.Region), size = 1) +
scale_color_manual(values = c("#00008B","#33a02c","#e31a1c","#8470FF","#FF7F24","#7A378B","#00688B","#FFF68F","#FF82AB","#5C5C5C","#87CEEB","#D9D9D9","#8B5A00","#9ACD32","#8EE5EE","#20B2AA","#FFF0F5","#FFFF00","#FFFFFF")) + scale_color_manual(values = c("#00008B","#33a02c","#e31a1c","#8470FF","#FF7F24","#7A378B","#00688B","#FFF68F","#FF82AB","#5C5C5C","#87CEEB","#D9D9D9","#8B5A00","#9ACD32","#8EE5EE","#20B2AA","#FFF0F5","#FFFF00","#FFFFFF")) +
scale_x_date(date_breaks = 'week') + scale_x_date(date_breaks = 'week') +
...@@ -121,5 +118,6 @@ ggplot(covid.byCountry, aes(x = as.Date(Date), y = Case_number, group = Country. ...@@ -121,5 +118,6 @@ ggplot(covid.byCountry, aes(x = as.Date(Date), y = Case_number, group = Country.
xlab("Date") + xlab("Date") +
ylab("Number of cases (log10)") + labs(color = "Country") ylab("Number of cases (log10)") + labs(color = "Country")
#p
ggplotly(p)
``` ```
This diff is collapsed.
...@@ -148,7 +148,7 @@ Martinique,France,14.6415,-61.0242,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ...@@ -148,7 +148,7 @@ Martinique,France,14.6415,-61.0242,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,Latvia,56.8796,24.6032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,6,8,10,10,17,26,30,34,49,71,86,111,124,139,180,197,221,244,280,305,347,376,398,446,458,493,509,533,542,548,577,589,612,630,651,655,657,666,675,682,712,727,739,748,761,778,784,804,812,818,836,849,858,870,871,879,896,896,900,909,928,930,939,946,950,951,962,970,997,1008,1009,1012,1016,1025,1030,1046,1047,1049,1053,1057,1061,1064,1065,1066,1066,1071,1079,1082,1085,1086,1088,1088,1089,1092,1094,1096,1097,1097,1097,1098,1104,1108,1110,1111,1111,1111,1111,1111,1111,1112,1115,1116,1117,1118,1121,1122,1122,1123,1124,1127,1134,1141,1154,1165,1173,1173,1174,1174,1178,1179,1185,1189,1192,1192,1193 ,Latvia,56.8796,24.6032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,6,8,10,10,17,26,30,34,49,71,86,111,124,139,180,197,221,244,280,305,347,376,398,446,458,493,509,533,542,548,577,589,612,630,651,655,657,666,675,682,712,727,739,748,761,778,784,804,812,818,836,849,858,870,871,879,896,896,900,909,928,930,939,946,950,951,962,970,997,1008,1009,1012,1016,1025,1030,1046,1047,1049,1053,1057,1061,1064,1065,1066,1066,1071,1079,1082,1085,1086,1088,1088,1089,1092,1094,1096,1097,1097,1097,1098,1104,1108,1110,1111,1111,1111,1111,1111,1111,1112,1115,1116,1117,1118,1121,1122,1122,1123,1124,1127,1134,1141,1154,1165,1173,1173,1174,1174,1178,1179,1185,1189,1192,1192,1193
,Lebanon,33.8547,35.8623,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,4,10,13,13,13,16,22,22,32,32,41,61,61,77,93,110,110,120,133,157,163,187,248,267,318,333,368,391,412,438,446,470,479,494,508,520,527,541,548,576,582,609,619,630,632,641,658,663,668,672,673,677,677,682,688,696,704,707,710,717,721,725,729,733,737,740,741,750,784,796,809,845,859,870,878,886,891,902,911,931,954,961,1024,1086,1097,1114,1119,1140,1161,1168,1172,1191,1220,1233,1242,1256,1306,1312,1320,1331,1350,1368,1388,1402,1422,1442,1446,1464,1473,1489,1495,1510,1536,1587,1603,1622,1644,1662,1697,1719,1740,1745,1778,1788,1796,1830,1855,1873,1885,1907,1946,2011,2082,2168,2334,2419,2451,2542,2599,2700,2775,2859,2905,2980 ,Lebanon,33.8547,35.8623,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,4,10,13,13,13,16,22,22,32,32,41,61,61,77,93,110,110,120,133,157,163,187,248,267,318,333,368,391,412,438,446,470,479,494,508,520,527,541,548,576,582,609,619,630,632,641,658,663,668,672,673,677,677,682,688,696,704,707,710,717,721,725,729,733,737,740,741,750,784,796,809,845,859,870,878,886,891,902,911,931,954,961,1024,1086,1097,1114,1119,1140,1161,1168,1172,1191,1220,1233,1242,1256,1306,1312,1320,1331,1350,1368,1388,1402,1422,1442,1446,1464,1473,1489,1495,1510,1536,1587,1603,1622,1644,1662,1697,1719,1740,1745,1778,1788,1796,1830,1855,1873,1885,1907,1946,2011,2082,2168,2334,2419,2451,2542,2599,2700,2775,2859,2905,2980
,Liberia,6.4280550000000005,-9.429499,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,6,6,7,10,13,14,14,31,31,37,48,50,59,59,59,59,76,76,91,99,101,101,101,117,120,124,124,141,141,141,152,154,158,166,170,178,189,199,199,199,211,211,213,215,219,223,226,229,233,238,240,249,255,265,265,266,266,269,273,280,288,296,311,316,321,334,345,359,370,383,397,410,421,446,458,498,509,516,542,581,601,626,650,652,662,681,684,729,768,770,780,804,819,833,869,874,891,917,926,957,963,998,1010,1024,1024,1056,1070,1085,1088,1091,1107,1108 ,Liberia,6.4280550000000005,-9.429499,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,6,6,7,10,13,14,14,31,31,37,48,50,59,59,59,59,76,76,91,99,101,101,101,117,120,124,124,141,141,141,152,154,158,166,170,178,189,199,199,199,211,211,213,215,219,223,226,229,233,238,240,249,255,265,265,266,266,269,273,280,288,296,311,316,321,334,345,359,370,383,397,410,421,446,458,498,509,516,542,581,601,626,650,652,662,681,684,729,768,770,780,804,819,833,869,874,891,917,926,957,963,998,1010,1024,1024,1056,1070,1085,1088,1091,1107,1108
,Liechtenstein,47.14,9.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,4,4,4,7,28,28,28,37,37,51,51,51,56,56,56,56,62,68,68,75,75,77,77,77,78,78,78,79,79,79,79,79,79,79,79,79,81,81,81,81,81,81,81,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,83,86,82,82,82,82,82,82,82,82,83,83,83,83,84,84,84,84,84,84,84,84,84,84,84,85,86,86,86,86 ,Liechtenstein,47.14,9.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,4,4,4,7,28,28,28,37,37,51,51,51,56,56,56,56,62,68,68,75,76,77,77,77,78,78,78,79,79,79,79,79,79,79,79,79,81,81,81,81,81,81,81,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82,83,83,83,83,84,84,84,84,84,84,84,84,84,84,84,85,86,86,86,86
,Lithuania,55.1694,23.8813,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,3,3,6,8,12,17,25,27,36,49,83,143,179,209,274,299,358,394,460,491,537,581,649,696,771,811,843,880,912,955,999,1026,1053,1062,1070,1091,1128,1149,1239,1298,1326,1350,1370,1398,1410,1426,1438,1449,1344,1375,1385,1399,1406,1410,1419,1423,1428,1433,1436,1444,1479,1485,1491,1505,1511,1523,1534,1541,1547,1562,1577,1593,1604,1616,1623,1635,1639,1647,1656,1662,1670,1675,1678,1682,1684,1687,1694,1705,1714,1720,1727,1733,1752,1756,1763,1768,1773,1776,1778,1784,1792,1795,1798,1801,1803,1804,1806,1808,1813,1815,1816,1817,1818,1825,1828,1831,1836,1841,1844,1854,1857,1861,1865,1869,1874,1875,1882,1902,1908,1915,1932,1947,1949 ,Lithuania,55.1694,23.8813,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,3,3,6,8,12,17,25,27,36,49,83,143,179,209,274,299,358,394,460,491,537,581,649,696,771,811,843,880,912,955,999,1026,1053,1062,1070,1091,1128,1149,1239,1298,1326,1350,1370,1398,1410,1426,1438,1449,1344,1375,1385,1399,1406,1410,1419,1423,1428,1433,1436,1444,1479,1485,1491,1505,1511,1523,1534,1541,1547,1562,1577,1593,1604,1616,1623,1635,1639,1647,1656,1662,1670,1675,1678,1682,1684,1687,1694,1705,1714,1720,1727,1733,1752,1756,1763,1768,1773,1776,1778,1784,1792,1795,1798,1801,1803,1804,1806,1808,1813,1815,1816,1817,1818,1825,1828,1831,1836,1841,1844,1854,1857,1861,1865,1869,1874,1875,1882,1902,1908,1915,1932,1947,1949
,Luxembourg,49.8153,6.1296,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,5,7,19,34,51,59,77,140,203,335,484,670,798,875,1099,1333,1453,1605,1831,1950,1988,2178,2319,2487,2612,2729,2804,2843,2970,3034,3115,3223,3270,3281,3292,3307,3373,3444,3480,3537,3550,3558,3618,3654,3665,3695,3711,3723,3729,3741,3769,3784,3802,3812,3824,3828,3840,3851,3859,3871,3877,3886,3888,3894,3904,3915,3923,3930,3945,3947,3958,3971,3980,3981,3990,3992,3993,3995,4001,4008,4012,4016,4018,4019,4020,4024,4027,4032,4035,4039,4040,4046,4049,4052,4055,4063,4070,4072,4075,4085,4091,4099,4105,4120,4121,4133,4140,4151,4173,4217,4242,4256,4299,4345,4395,4447,4476,4522,4542,4603,4650,4719,4777,4842,4925,4956,5056,5122,5285,5409,5483,5605,5639,5725 ,Luxembourg,49.8153,6.1296,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,5,7,19,34,51,59,77,140,203,335,484,670,798,875,1099,1333,1453,1605,1831,1950,1988,2178,2319,2487,2612,2729,2804,2843,2970,3034,3115,3223,3270,3281,3292,3307,3373,3444,3480,3537,3550,3558,3618,3654,3665,3695,3711,3723,3729,3741,3769,3784,3802,3812,3824,3828,3840,3851,3859,3871,3877,3886,3888,3894,3904,3915,3923,3930,3945,3947,3958,3971,3980,3981,3990,3992,3993,3995,4001,4008,4012,4016,4018,4019,4020,4024,4027,4032,4035,4039,4040,4046,4049,4052,4055,4063,4070,4072,4075,4085,4091,4099,4105,4120,4121,4133,4140,4151,4173,4217,4242,4256,4299,4345,4395,4447,4476,4522,4542,4603,4650,4719,4777,4842,4925,4956,5056,5122,5285,5409,5483,5605,5639,5725
,Madagascar,-18.766947,46.869107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,12,17,19,23,26,26,39,43,57,57,59,70,70,72,82,88,93,93,93,102,106,106,108,110,111,117,120,121,121,121,121,121,122,123,124,128,128,128,128,132,135,149,149,151,158,193,193,193,193,186,186,212,230,238,283,304,322,326,371,405,448,488,527,542,586,612,656,698,758,771,826,845,908,957,975,1026,1052,1094,1138,1162,1203,1240,1252,1272,1290,1317,1378,1403,1443,1503,1596,1640,1724,1787,1829,1922,2005,2078,2138,2214,2303,2403,2512,2728,2941,3250,3472,3573,3782,4143,4578,4867,5080,5343,5605,6089,6467,6849,7049,7153,7548 ,Madagascar,-18.766947,46.869107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,12,17,19,23,26,26,39,43,57,57,59,70,70,72,82,88,93,93,93,102,106,106,108,110,111,117,120,121,121,121,121,121,122,123,124,128,128,128,128,132,135,149,149,151,158,193,193,193,193,186,186,212,230,238,283,304,322,326,371,405,448,488,527,542,586,612,656,698,758,771,826,845,908,957,975,1026,1052,1094,1138,1162,1203,1240,1252,1272,1290,1317,1378,1403,1443,1503,1596,1640,1724,1787,1829,1922,2005,2078,2138,2214,2303,2403,2512,2728,2941,3250,3472,3573,3782,4143,4578,4867,5080,5343,5605,6089,6467,6849,7049,7153,7548
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment