Commit f9091bb9 authored by fun-MOOC-ed's avatar fun-MOOC-ed

corrections de syntaxe après comparaison avec solution

parent 5aea6c71
......@@ -10,15 +10,15 @@ knitr::opts_chunk$set(echo = TRUE)
```
## En demandant à la lib maths
Mon ordinateur m’indique que \(\pi\) vaut *approximativement*
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r pi, include=TRUE}
```{r}
pi
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```{r, include=TRUE}
```{r}
set.seed(42)
N = 100000
x = runif(N)
......@@ -26,10 +26,10 @@ theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si \(X∼U(0,1)\) et \(Y∼U(0,1)\) alors \(P[X^2+Y^2≤1]=\pi/4\) (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
```{r, include=TRUE}
```{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
......@@ -38,8 +38,8 @@ library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d’obtenir une approximation (pas terrible) de \(\pi\) en comptant combien de fois, en moyenne, \(X^2+Y^2\) est inférieur à 1:
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1:
```{r, include=TRUE}
```{r}
4*mean(df$Accept)
```
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment