Commit df3d8805 authored by Olivia Guillin's avatar Olivia Guillin

Modification du fichier

parent 46ad7929
......@@ -42,30 +42,31 @@ data
#+RESULTS:
#+begin_example
Date Count Temperature Pressure Malfunction
1 4/12/81 6 66 50 0
2 11/12/81 6 70 50 1
3 3/22/82 6 69 50 0
4 11/11/82 6 68 50 0
5 4/04/83 6 67 50 0
6 6/18/82 6 72 50 0
7 8/30/83 6 73 100 0
8 11/28/83 6 70 100 0
9 2/03/84 6 57 200 1
10 4/06/84 6 63 200 1
11 8/30/84 6 70 200 1
12 10/05/84 6 78 200 0
13 11/08/84 6 67 200 0
14 1/24/85 6 53 200 2
15 4/12/85 6 67 200 0
16 4/29/85 6 75 200 0
17 6/17/85 6 70 200 0
18 7/29/85 6 81 200 0
19 8/27/85 6 76 200 0
20 10/03/85 6 79 200 0
21 10/30/85 6 75 200 2
22 11/26/85 6 76 200 0
23 1/12/86 6 58 200 1
Date Count Temperature Pressure Malfunction
1 4/12/81 6 66 50 0
2 11/12/81 6 70 50 1
3 3/22/82 6 69 50 0
4 11/11/82 6 68 50 0
5 4/04/83 6 67 50 0
6 6/18/82 6 72 50 0
7 8/30/83 6 73 100 0
8 11/28/83 6 70 100 0
9 2/03/84 6 57 200 1
10 4/06/84 6 63 200 1
11 8/30/84 6 70 200 1
12 10/05/84 6 78 200 0
13 11/08/84 6 67 200 0
14 1/24/85 6 53 200 2
15 4/12/85 6 67 200 0
16 4/29/85 6 75 200 0
17 6/17/85 6 70 200 0
18 7/29/85 6 81 200 0
19 8/27/85 6 76 200 0
20 10/03/85 6 79 200 0
21 10/30/85 6 75 200 2
22 11/26/85 6 76 200 0
23 1/12/86 6 58 200 1
#+end_example
Le jeu de données nous indique la date de l'essai, le nombre de joints
......@@ -79,20 +80,7 @@ sur l'influence de la température ou de la pression sur les
dysfonctionnements, nous nous concentrons sur les expériences où au
moins un joint a été défectueux.
#+begin_src R :results output :session *R* :exports both
data = data[data$Malfunction>0,]
data
#+end_src
#+RESULTS:
: Date Count Temperature Pressure Malfunction
: 2 11/12/81 6 70 50 1
: 9 2/03/84 6 57 200 1
: 10 4/06/84 6 63 200 1
: 11 8/30/84 6 70 200 1
: 14 1/24/85 6 53 200 2
: 21 10/30/85 6 75 200 2
: 23 1/12/86 6 58 200 1
Très bien, nous avons une variabilité de température importante mais
la pression est quasiment toujours égale à 200, ce qui devrait
......@@ -134,21 +122,23 @@ glm(formula = Malfunction/Count ~ Temperature, family = binomial(link = "logit")
data = data, weights = Count)
Deviance Residuals:
2 9 10 11 14 21 23
-0.3015 -0.2836 -0.2919 -0.3015 0.6891 0.6560 -0.2850
Min 1Q Median 3Q Max
-0.95227 -0.78299 -0.54117 -0.04379 2.65152
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.389528 3.195752 -0.435 0.664
Temperature 0.001416 0.049773 0.028 0.977
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.08498 3.05247 1.666 0.0957 .
Temperature -0.11560 0.04702 -2.458 0.0140 *
---
codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1.3347 on 6 degrees of freedom
Residual deviance: 1.3339 on 5 degrees of freedom
AIC: 18.894
Null deviance: 24.230 on 22 degrees of freedom
Residual deviance: 18.086 on 21 degrees of freedom
AIC: 35.647
Number of Fisher Scoring iterations: 4
Number of Fisher Scoring iterations: 5
#+end_example
L'estimateur le plus probable du paramètre de température est 0.001416
......@@ -185,6 +175,7 @@ sum(data_full$Malfunction)/sum(data_full$Count)
#+end_src
#+RESULTS:
:
: [1] 0.06521739
Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment