resultb

parent ad8abdb2
...@@ -315,7 +315,7 @@ ...@@ -315,7 +315,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 67, "execution_count": 69,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -353,7 +353,6 @@ ...@@ -353,7 +353,6 @@
"print(\"R-squared (R²):\", r_cuadrado)\n", "print(\"R-squared (R²):\", r_cuadrado)\n",
"print(\"It is considered a linear model, or line, that verifies the linear function Y=M.X + H with M: Regression coefficient, H: Intercept, and R-squared (R²): proportion of the total variability of the variable dependent that is explained by the model\")\n", "print(\"It is considered a linear model, or line, that verifies the linear function Y=M.X + H with M: Regression coefficient, H: Intercept, and R-squared (R²): proportion of the total variability of the variable dependent that is explained by the model\")\n",
"\n", "\n",
"\n",
"# Prédire la concentration de CO2 en 2025\n", "# Prédire la concentration de CO2 en 2025\n",
"weeks_in_2025 = (2025 - data['Date'].dt.year.min()) * 52\n", "weeks_in_2025 = (2025 - data['Date'].dt.year.min()) * 52\n",
"predicted_CO2_2025 = model.predict([[weeks_in_2025]])\n", "predicted_CO2_2025 = model.predict([[weeks_in_2025]])\n",
...@@ -363,14 +362,14 @@ ...@@ -363,14 +362,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 59, "execution_count": 70,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# Caractériser l’oscillation\n", "# Caractériser l’oscillation\n",
"import numpy as np\n", "import numpy as np\n",
"# from scipy.fft import fft # fft desde scipy.fft, tiene problemas para cargarse, puede ser que se este utilizando una versión de SciPy anterior a la 1.4.0. La función fft se agregó en SciPy versión 1.4.0.\n", "# from scipy.fft import fft # fft de scipy.fft, a des problèmes de chargement, il se peut que nous utilisions une version de SciPy antérieure à 1.4.0. La fonction fft a été ajoutée dans SciPy version 1.4.0.\n",
"# Para resolver el problema se puede utilizar la función fft de numpy en su lugar, ya que numpy también proporciona funciones para realizar la transformada de Fourier" "# Pour résoudre le problème, nous pouvons utiliser la fonction fft de numpy à la place, puisque numpy fournit également des fonctions pour effectuer la transformée de Fourier"
] ]
}, },
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment