no commit message

parent b5cd5399
......@@ -4,14 +4,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# A propos du calcul de $\\pi$"
"# 1. A propos du calcul de $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## En demandant à la lib maths"
"## 1.1 En demandant à la lib maths"
]
},
{
......@@ -43,7 +43,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## En utilisant la méthode des aiguilles de Buffon"
"## 1.2 En utilisant la méthode des aiguilles de Buffon"
]
},
{
......@@ -82,7 +82,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Avec un argument \"fréquentiel\" de surface"
"## 1.3 Avec un argument \"fréquentiel\" de surface"
]
},
{
......@@ -96,30 +96,6 @@
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
......@@ -135,6 +111,16 @@
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
......@@ -150,8 +136,10 @@
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
......@@ -159,7 +147,7 @@
"3.112"
]
},
"execution_count": 6,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
......@@ -168,6 +156,18 @@
"4*np.mean(accept)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment