Upload New File

parent 04be43f2
* Chalenger - Emacs - Python - Windows 7 64 bits
** Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure
In this document we reperform some of the analysis provided in
/Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of
Failure/ by /Siddhartha R. Dalal, Edward B. Fowlkes, Bruce Hoadley/
published in /Journal of the American Statistical Association/, Vol. 84,
No. 408 (Dec., 1989), pp. 945-957 and available at
http://www.jstor.org/stable/2290069.
On the fourth page of this article, they indicate that the maximum
likelihood estimates of the logistic regression using only temperature
are: *$\hat{\alpha}$ = 5.085* and *$\hat{\beta}$ = -0.1156* and their
asymptotic standard errors are *$s_{\hat{\alpha}}$ = 3.052* and
*$s_{\hat{\beta}}$ = 0.047*. The Goodness of fit indicated for this model was
*$G^2$ = 18.086* with *21* degrees of freedom. Our goal is to reproduce
the computation behind these values and the Figure 4 of this article,
possibly in a nicer looking way.
*** Technical information on the computer on which the analysis is run
We will be using the Python 3 language using the pandas, statsmodels,
and numpy library.
#+begin_src python :results output :session :exports both
def print_imported_modules():
import sys
for name, val in sorted(sys.modules.items()):
if(hasattr(val, '__version__')):
print(val.__name__, val.__version__)
# else:
# print(val.__name__, "(unknown version)")
def print_sys_info():
import sys
import platform
print(sys.version)
print(platform.uname())
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn as sns
print_sys_info()
print_imported_modules()
#+end_src
#+RESULTS:
#+begin_example
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)]
uname_result(system='Windows', node='MGDONDON', release='7', version='6.1.7601', machine='AMD64', processor='Intel64 Family 6 Model 94 Stepping 3, GenuineIntel')
IPython 6.5.0
IPython.core.release 6.5.0
_csv 1.0
_ctypes 1.1.0
decimal 1.70
argparse 1.1
backcall 0.1.0
colorama 0.3.9
csv 1.0
ctypes 1.1.0
cycler 0.10.0
dateutil 2.7.3
decimal 1.70
decorator 4.3.0
distutils 3.7.0
ipykernel 4.8.2
ipykernel._version 4.8.2
ipython_genutils 0.2.0
ipython_genutils._version 0.2.0
ipywidgets 7.4.0
ipywidgets._version 7.4.0
jedi 0.12.1
json 2.0.9
jupyter_client 5.2.3
jupyter_client._version 5.2.3
jupyter_core 4.4.0
jupyter_core.version 4.4.0
kiwisolver 1.0.1
logging 0.5.1.2
matplotlib 2.2.3
matplotlib.backends.backend_agg 2.2.3
numpy 1.15.0
numpy.core 1.15.0
numpy.core.multiarray 3.1
numpy.lib 1.15.0
numpy.linalg._umath_linalg b'0.1.5'
numpy.matlib 1.15.0
pandas 0.23.4
_libjson 1.33
parso 0.3.1
patsy 0.5.0
patsy.version 0.5.0
pickleshare 0.7.4
platform 1.0.8
prompt_toolkit 1.0.15
pygments 2.2.0
pyparsing 2.2.0
pytz 2018.5
re 2.2.1
scipy 1.1.0
scipy._lib.decorator 4.0.5
scipy._lib.six 1.2.0
scipy.fftpack._fftpack b'$Revision: $'
scipy.fftpack.convolve b'$Revision: $'
scipy.integrate._dop b'$Revision: $'
scipy.integrate._ode $Id$
scipy.integrate._odepack 1.9
scipy.integrate._quadpack 1.13
scipy.integrate.lsoda b'$Revision: $'
scipy.integrate.vode b'$Revision: $'
scipy.interpolate._fitpack 1.7
scipy.interpolate.dfitpack b'$Revision: $'
scipy.linalg 0.4.9
scipy.linalg._fblas b'$Revision: $'
scipy.linalg._flapack b'$Revision: $'
scipy.linalg._flinalg b'$Revision: $'
scipy.ndimage 2.0
scipy.optimize._cobyla b'$Revision: $'
scipy.optimize._lbfgsb b'$Revision: $'
scipy.optimize._minpack 1.10
scipy.optimize._nnls b'$Revision: $'
scipy.optimize._slsqp b'$Revision: $'
scipy.optimize.minpack2 b'$Revision: $'
scipy.signal.spline 0.2
scipy.sparse.linalg.eigen.arpack._arpack b'$Revision: $'
scipy.sparse.linalg.isolve._iterative b'$Revision: $'
scipy.special.specfun b'$Revision: $'
scipy.stats.mvn b'$Revision: $'
scipy.stats.statlib b'$Revision: $'
seaborn 0.9.0
seaborn.external.husl 2.1.0
seaborn.external.six 1.10.0
six 1.11.0
statsmodels 0.9.0
statsmodels.__init__ 0.9.0
traitlets 4.3.2
traitlets._version 4.3.2
urllib.request 3.7
zlib 1.0
zmq 17.1.2
zmq.sugar 17.1.2
zmq.sugar.version 17.1.2
#+end_example
*** Loading and inspecting data
Let's start by reading data.
#+begin_src python :results output :session :exports both
data = pd.read_csv("https://app-learninglab.inria.fr/gitlab/moocrr-session1/moocrr-reproducibility-study/raw/master/data/shuttle.csv")
print(data)
#+end_src
#+RESULTS:
#+begin_example
Date Count Temperature Pressure Malfunction
0 4/12/81 6 66 50 0
1 11/12/81 6 70 50 1
2 3/22/82 6 69 50 0
3 11/11/82 6 68 50 0
4 4/04/83 6 67 50 0
5 6/18/82 6 72 50 0
6 8/30/83 6 73 100 0
7 11/28/83 6 70 100 0
8 2/03/84 6 57 200 1
9 4/06/84 6 63 200 1
10 8/30/84 6 70 200 1
11 10/05/84 6 78 200 0
12 11/08/84 6 67 200 0
13 1/24/85 6 53 200 2
14 4/12/85 6 67 200 0
15 4/29/85 6 75 200 0
16 6/17/85 6 70 200 0
17 7/2903/85 6 81 200 0
18 8/27/85 6 76 200 0
19 10/03/85 6 79 200 0
20 10/30/85 6 75 200 2
21 11/26/85 6 76 200 0
22 1/12/86 6 58 200 1
#+end_example
We know from our previous experience on this data set that filtering
data is a really bad idea. We will therefore process it as such.
#+begin_src python :results file :session :var matplot_lib_filename=(org-babel-temp-file "figure" ".png") :exports both
%matplotlib inline
pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas
data["Frequency"]=data.Malfunction/data.Count
data.plot(x="Temperature",y="Frequency",kind="scatter",ylim=[0,1])
plt.grid(True)
plt.tight_layout()
plt.savefig(matplot_lib_filename)
matplot_lib_filename
#+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-aNPFF5/figureFG8KBj.png]]
*** Logistic regression
Let's assume O-rings independently fail with the same probability
which solely depends on temperature. A logistic regression should
allow us to estimate the influence of temperature.
#+begin_src python :results output :session :exports both
import statsmodels.api as sm
data["Success"]=data.Count-data.Malfunction
data["Intercept"]=1
logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']],
family=sm.families.Binomial(sm.families.links.logit)).fit()
print(logmodel.summary())
#+end_src
#+RESULTS:
#+begin_example
Generalized Linear Model Regression Results
==============================================================================
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 21
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3.9210
Date: Mon, 12 Nov 2018 Deviance: 3.0144
Time: 13:13:31 Pearson chi2: 5.00
No. Iterations: 6 Covariance Type: nonrobust
===============================================================================
coef std err z P>|z| [0.025 0.975]
-------------------------------------------------------------------------------
Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740
Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110
===============================================================================
#+end_example
The maximum likelyhood estimator of the intercept and of Temperature
are thus *$\hat{\alpha}$ = 5.0850* and *$\hat{\beta}$ = -0.1156*. This *corresponds*
to the values from the article of Dalal /et al./ The standard errors are
/$s_{\hat{\alpha}}$ = 7.477/ and /$s_{\hat{\beta}}$ = 0.115/, which is *different* from
the *3.052* and *0.04702* reported by Dallal /et al./ The deviance is
/3.01444/ with *21* degrees of freedom. I cannot find any value similar
to the Goodness of fit (*$G^2$ = 18.086*) reported by Dalal /et al./ There
seems to be something wrong. Oh I know, I haven't indicated that my
observations are actually the result of 6 observations for each rocket
launch. Let's indicate these weights (since the weights are always the
same throughout all experiments, it does not change the estimates of
the fit but it does influence the variance estimates).
#+begin_src python :results output :session :exports both
logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']],
family=sm.families.Binomial(sm.families.links.logit),
var_weights=data['Count']).fit()
print(logmodel.summary())
#+end_src
#+RESULTS:
#+begin_example
Generalized Linear Model Regression Results
==============================================================================
Dep. Variable: Frequency No. Observations: 23
Model: GLM Df Residuals: 21
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -23.526
Date: Mon, 12 Nov 2018 Deviance: 18.086
Time: 13:13:39 Pearson chi2: 30.0
No. Iterations: 6 Covariance Type: nonrobust
===============================================================================
coef std err z P>|z| [0.025 0.975]
-------------------------------------------------------------------------------
Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068
Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023
===============================================================================
#+end_example
Good, now I have recovered the asymptotic standard errors
*$s_{\hat{\alpha}}$ = 3.052* and *$s_{\hat{\beta}}$ = 0.047*. The Goodness of fit
(Deviance) indicated for this model is *$G^2$ = 18.086* with *21* degrees
of freedom (Df Residuals).
*I have therefore managed to fully replicate the results of the Dalal
/et al./ article*.
*** Predicting failure probability
The temperature when launching the shuttle was 31°F. Let's try to
estimate the failure probability for such temperature using our model:
#+begin_src python :results file :session :var matplot_lib_filename=(org-babel-temp-file "figure" ".png") :exports both
%matplotlib inline
data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})
data_pred['Frequency'] = logmodel.predict(data_pred)
data_pred.plot(x="Temperature",y="Frequency",kind="line",ylim=[0,1])
plt.scatter(x=data["Temperature"],y=data["Frequency"])
plt.grid(True)
plt.savefig(matplot_lib_filename)
matplot_lib_filename
#+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-aNPFF5/figure51z7PH.png]]
This figure is very similar to the Figure 4 of Dalal /et al./ *I have
managed to replicate the Figure 4 of the Dalal /et al./ article.*
** Computing and plotting uncertainty
Following the documentation of
[Seaborn](https://seaborn.pydata.org/generated/seaborn.regplot.html),
I use regplot.
#+begin_src python :results file :session :var matplot_lib_filename=(org-babel-temp-file "figure" ".png") :exports both
sns.set(color_codes=True)
plt.xlim(30,90)
plt.ylim(0,1)
sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)
plt.show()
plt.savefig(matplot_lib_filename)
matplot_lib_filename
#+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-aNPFF5/figurebq7jid.png]]
**I think I have managed to correctly compute and plot the uncertainty
of my prediction.** Although the shaded area seems very similar to
[the one obtained by with
R](https://app-learninglab.inria.fr/gitlab/moocrr-session1/moocrr-reproducibility-study/raw/5c9dbef11b4d7638b7ddf2ea71026e7bf00fcfb0/challenger.pdf),
I can spot a few differences (e.g., the blue point for temperature
63 is outside)... Could this be a numerical error ? Or a difference
in the statistical method ? It is not clear which one is "right".
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment