Replace challenger_R_org_Windows_64bits.org

parent 32a54a75
...@@ -170,9 +170,6 @@ Let's visually inspect how temperature affects malfunction: ...@@ -170,9 +170,6 @@ Let's visually inspect how temperature affects malfunction:
plot(data=data, Malfunction/Count ~ Temperature, ylim = c(0,1)) plot(data=data, Malfunction/Count ~ Temperature, ylim = c(0,1))
#+end_src #+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-mb830V/figuremlknwM.png]]
* Logistic regression * Logistic regression
Let's assume O-rings independently fail with the same probability Let's assume O-rings independently fail with the same probability
...@@ -232,9 +229,6 @@ plot(tempv,rmv,type="l",ylim=c(0,1)) ...@@ -232,9 +229,6 @@ plot(tempv,rmv,type="l",ylim=c(0,1))
points(data=data, Malfunction/Count ~ Temperature) points(data=data, Malfunction/Count ~ Temperature)
#+end_src #+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-mb830V/figurePDN133.png]]
This figure is very similar to the Figure 4 of Dalal /et al./ *I have This figure is very similar to the Figure 4 of Dalal /et al./ *I have
managed to replicate the Figure 4 of the Dalal /et al./ article.* managed to replicate the Figure 4 of the Dalal /et al./ article.*
...@@ -249,9 +243,6 @@ ggplot(data, aes(y=Malfunction/Count, x=Temperature)) + ...@@ -249,9 +243,6 @@ ggplot(data, aes(y=Malfunction/Count, x=Temperature)) +
xlim(30,90) + ylim(0,1) + theme_bw() xlim(30,90) + ylim(0,1) + theme_bw()
#+end_src #+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-mb830V/figureUmDY5S.png]]
I don't get any warning from ~ggplot2~ indicating /"non-integer I don't get any warning from ~ggplot2~ indicating /"non-integer
#successes in a binomial glm!"/ but this confidence region seems #successes in a binomial glm!"/ but this confidence region seems
huge... It seems strange to me that the uncertainty grows so large for huge... It seems strange to me that the uncertainty grows so large for
...@@ -335,9 +326,6 @@ ggplot(data=data_flat, aes(y=Malfunction, x=Temperature)) + ...@@ -335,9 +326,6 @@ ggplot(data=data_flat, aes(y=Malfunction, x=Temperature)) +
geom_point(alpha=.5, size=.5) + xlim(30,90) + ylim(0,1) + theme_bw() geom_point(alpha=.5, size=.5) + xlim(30,90) + ylim(0,1) + theme_bw()
#+end_src #+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-mb830V/figureEStjqI.png]]
This confidence interval seems much more reasonable (in accordance This confidence interval seems much more reasonable (in accordance
with the data) than the previous one. Let's check whether it with the data) than the previous one. Let's check whether it
corresponds to the prediction obtained when calling directly corresponds to the prediction obtained when calling directly
...@@ -375,7 +363,15 @@ pred_link ...@@ -375,7 +363,15 @@ pred_link
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: Erreur : objet 'pred.link' introuvable : $fit
: 1
: 1.616942
:
: $se.fit
: [1] 1.659473
:
: $residual.scale
: [1] 1
#+begin_src R :results output :session *R* :exports both #+begin_src R :results output :session *R* :exports both
logistic_reg$family$linkinv(pred_link$fit) logistic_reg$family$linkinv(pred_link$fit)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment