Replace challenger_R_org_Windows_64bits.org

parent 32a54a75
......@@ -170,9 +170,6 @@ Let's visually inspect how temperature affects malfunction:
plot(data=data, Malfunction/Count ~ Temperature, ylim = c(0,1))
#+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-mb830V/figuremlknwM.png]]
* Logistic regression
Let's assume O-rings independently fail with the same probability
......@@ -232,9 +229,6 @@ plot(tempv,rmv,type="l",ylim=c(0,1))
points(data=data, Malfunction/Count ~ Temperature)
#+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-mb830V/figurePDN133.png]]
This figure is very similar to the Figure 4 of Dalal /et al./ *I have
managed to replicate the Figure 4 of the Dalal /et al./ article.*
......@@ -249,9 +243,6 @@ ggplot(data, aes(y=Malfunction/Count, x=Temperature)) +
xlim(30,90) + ylim(0,1) + theme_bw()
#+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-mb830V/figureUmDY5S.png]]
I don't get any warning from ~ggplot2~ indicating /"non-integer
#successes in a binomial glm!"/ but this confidence region seems
huge... It seems strange to me that the uncertainty grows so large for
......@@ -335,9 +326,6 @@ ggplot(data=data_flat, aes(y=Malfunction, x=Temperature)) +
geom_point(alpha=.5, size=.5) + xlim(30,90) + ylim(0,1) + theme_bw()
#+end_src
#+RESULTS:
[[file:c:/Users/dondon/AppData/Local/Temp/babel-mb830V/figureEStjqI.png]]
This confidence interval seems much more reasonable (in accordance
with the data) than the previous one. Let's check whether it
corresponds to the prediction obtained when calling directly
......@@ -375,7 +363,15 @@ pred_link
#+end_src
#+RESULTS:
: Erreur : objet 'pred.link' introuvable
: $fit
: 1
: 1.616942
:
: $se.fit
: [1] 1.659473
:
: $residual.scale
: [1] 1
#+begin_src R :results output :session *R* :exports both
logistic_reg$family$linkinv(pred_link$fit)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment