Commit 476dacd3 authored by Helene31's avatar Helene31

changement nom de fichier

parent 8a5d424d
This source diff could not be displayed because it is too large. You can view the blob instead.
---
title: "À propos du calcul de pi"
author: "Hélène Raynal"
date: "2 avril 2020"
output: html_document
---
## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut approximativement
```{r cars}
pi
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
```{r }
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si
$X \sim U(0,1)$ et
$Y \sim U(0,1)$ alors
$P[X^{2} + Y^{2} \le 1]= \pi /4$
(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait:
```{r }
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X{2}+Y{2}$ est inférieur à 1:
```{r }
4*mean(df$Accept)
```
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment