Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
moocrr-reproducibility-study
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
moocrr-session3
moocrr-reproducibility-study
Commits
b314c0f8
Commit
b314c0f8
authored
Dec 07, 2020
by
cded6f222a164a22601711b16e547edb
💬
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add CHANGELOG
parent
4cef0dcb
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
73 additions
and
0 deletions
+73
-0
CHANGELOG
CHANGELOG
+73
-0
No files found.
CHANGELOG
0 → 100644
View file @
b314c0f8
def print_imported_modules():
import sys
for name, val in sorted(sys.modules.items()):
if(hasattr(val, '__version__')):
print(val.__name__, val.__version__)
# else:
# print(val.__name__, "(unknown version)")
def print_sys_info():
import sys
import platform
print(sys.version)
print(platform.uname())
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn as sns
print_sys_info()
print_imported_modules()
data = pd.read_csv("data_shuttle.csv")
data
%matplotlib inline
pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas
import matplotlib.pyplot as plt
data["Frequency"]=data.Malfunction/data.Count
data.plot(x="Temperature",y="Frequency",kind="scatter",ylim=[0,1])
plt.grid(True)
import statsmodels.api as sm
data["Success"]=data.Count-data.Malfunction
data["Intercept"]=1
logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']],
family=sm.families.Binomial(sm.families.links.logit)).fit()
logmodel.summary()
logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']],
family=sm.families.Binomial(sm.families.links.logit),
var_weights=data['Count']).fit()
logmodel.summary()
%matplotlib inline
data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})
data_pred['Frequency'] = logmodel.predict(data_pred)
data_pred.plot(x="Temperature",y="Frequency",kind="line",ylim=[0,1])
plt.scatter(x=data["Temperature"],y=data["Frequency"])
plt.grid(True)
sns.set(color_codes=True)
plt.xlim(30,90)
plt.ylim(0,1)
sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)
plt.show()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment