Add CHANGELOG

parent 4cef0dcb
def print_imported_modules():
import sys
for name, val in sorted(sys.modules.items()):
if(hasattr(val, '__version__')):
print(val.__name__, val.__version__)
# else:
# print(val.__name__, "(unknown version)")
def print_sys_info():
import sys
import platform
print(sys.version)
print(platform.uname())
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn as sns
print_sys_info()
print_imported_modules()
data = pd.read_csv("data_shuttle.csv")
data
%matplotlib inline
pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas
import matplotlib.pyplot as plt
data["Frequency"]=data.Malfunction/data.Count
data.plot(x="Temperature",y="Frequency",kind="scatter",ylim=[0,1])
plt.grid(True)
import statsmodels.api as sm
data["Success"]=data.Count-data.Malfunction
data["Intercept"]=1
logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']],
family=sm.families.Binomial(sm.families.links.logit)).fit()
logmodel.summary()
logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']],
family=sm.families.Binomial(sm.families.links.logit),
var_weights=data['Count']).fit()
logmodel.summary()
%matplotlib inline
data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})
data_pred['Frequency'] = logmodel.predict(data_pred)
data_pred.plot(x="Temperature",y="Frequency",kind="line",ylim=[0,1])
plt.scatter(x=data["Temperature"],y=data["Frequency"])
plt.grid(True)
sns.set(color_codes=True)
plt.xlim(30,90)
plt.ylim(0,1)
sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)
plt.show()
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment