toy_notebook_fr

parent 55b68fb5
...@@ -2,7 +2,10 @@ ...@@ -2,7 +2,10 @@
"cells": [ "cells": [
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [ "source": [
"**toy_notebook_fr**\n", "**toy_notebook_fr**\n",
"\n", "\n",
...@@ -15,7 +18,10 @@ ...@@ -15,7 +18,10 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [], "outputs": [],
"source": [ "source": [
"from math import *\n", "from math import *\n",
...@@ -24,7 +30,10 @@ ...@@ -24,7 +30,10 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [ "source": [
"**1.2 En utilisant la méthode des aiguilles de Buffon**\n", "**1.2 En utilisant la méthode des aiguilles de Buffon**\n",
"Mais calculé avec la **méthode** des aiguilles de Buffon, on obtiendrait comme **approximation :**" "Mais calculé avec la **méthode** des aiguilles de Buffon, on obtiendrait comme **approximation :**"
...@@ -33,7 +42,10 @@ ...@@ -33,7 +42,10 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,
"metadata": {}, "metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [], "outputs": [],
"source": [ "source": [
"import numpy as np\n", "import numpy as np\n",
...@@ -46,7 +58,10 @@ ...@@ -46,7 +58,10 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [ "source": [
"**1.3 Avec un argument \"fréquentiel\" de surface**\n", "**1.3 Avec un argument \"fréquentiel\" de surface**\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si X" "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si X"
...@@ -54,6 +69,8 @@ ...@@ -54,6 +69,8 @@
} }
], ],
"metadata": { "metadata": {
"celltoolbar": "Tags",
"hide_code_all_hidden": false,
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
......
{ {
"cells": [], "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# toy_notebook_fr\n",
"## March 28, 2019"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. **A propos du calcul de** $\\pi$\n",
" 1. **En demandant à la lib maths**\n",
" Mon ordinateur m'ndique que $\\pi$ vaut _approximativement_"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from math import *\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" 2. **En utilisant la méThode des aiguilles de Buffon**\n",
" Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation**:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" 3. **Avec un argument \"fréquentiel\" de surface**\n",
" Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si \\X $\\sim U(0,1) et \\Y $\\sim U(0,1) alors \\P$[\\X^2 $\\oplus$ \\Y^2]$ = $\\pi$ $\\div$ 4 ( voir [méthode de MOnte Carlo sur Wikipedia] (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)).Le code suivant illustre ce fait : "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"1\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé d'obtenir une approximation (pas terrible) de \\$pi$ en comptant combien de fois, en moyenne,\\X^2 $\\oplus$ \\Y^2 est inférieur à 1 :"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"4*np.mean(accept)"
]
}
],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
...@@ -16,10 +111,9 @@ ...@@ -16,10 +111,9 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.3" "version": "3.6.4"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment