Add CHANGELOG_essai Rstudio_mise en page

parent 378e6563
---
title: "A propos du calcul de pi"
author: "Nathalie Brouard"
date: "2024-05-09"
output: html_document
---
En demandant à la lib maths
```{r}
mygitlab.yaml
```
```{r}
#Mon ordinateur m’indique que π vaut approximativement
pi
```
En utilisant la méthode des aiguilles de Buffon
```{r}
#Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```
Avec un argument “fréquentiel” de surface
```{r}
#Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1)
# et Y∼U(0,1)
# alors P[X2+Y2≤1]=π/4
# (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait:
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
```{r}
#Il est alors aisé d’obtenir une approximation (pas terrible) de π
#en comptant combien de fois, en moyenne, X2+Y2
# est inférieur à 1:
4*mean(df$Accept)
```
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment