Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
1059d1e2000ea662ceecd251e841f94b
mooc-rr
Commits
14b01c57
Commit
14b01c57
authored
May 18, 2024
by
1059d1e2000ea662ceecd251e841f94b
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Essai3 journal_toy_document_fr.Rmd
parent
a9399f7e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
40 additions
and
0 deletions
+40
-0
toy_document_fr.Rmd
module2/exo1/toy_document_fr.Rmd
+40
-0
No files found.
module2/exo1/toy_document_fr.Rmd
View file @
14b01c57
...
...
@@ -4,7 +4,47 @@ author: "Nathalie Brouard"
date: "05 mai 2024"
output: html_document
---
A propos du calcul de pi
Nathalie Brouard
2024-05-09
En demandant à la lib maths
#Mon ordinateur m’indique que π vaut approximativement
pi
## [1] 3.141593
En utilisant la méthode des aiguilles de Buffon
#Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
## [1] 3.14327
Avec un argument “fréquentiel” de surface
#Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si X∼U(0,1)
# et Y∼U(0,1)
# alors P[X2+Y2≤1]=π/4
# (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait:
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
## Warning: le package 'ggplot2' a été compilé avec la version R 4.3.3
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
remarque : je n'arrive pas à copier l'image
#Il est alors aisé d’obtenir une approximation (pas terrible) de π
#en comptant combien de fois, en moyenne, X2+Y2
# est inférieur à 1:
4*mean(df$Accept)
## [1] 3.156
R Markdown
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment