"## Avec un argument \"fréquentiel\" de surface\n",
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\simU(0, 1)$ et $Y\\sim U(0, 1)$ alors $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :\n"
"sinus se base sur le fait que si $X \\sim U(0, 1)$ et $Y \\sim U(0, 1)$ alors $P\\left[X^2 + Y^2 \\leq 1\\right] = \\pi/{4}$ (voir\n",
"[méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo)). Le code suivant illustre ce fait :\n"
]
]
},
},
{
{
...
@@ -114,8 +112,7 @@
...
@@ -114,8 +112,7 @@
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
"source": [
"source": [
"Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n",
"Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,en moyenne, $X^2 + Y^2$ est inférieur à 1 :"