Update toy_document_en.Rmd

parent a1fccd9c
---
title: "On the computation of pi"
author: "Lijuan Ren"
date: "20 Sept 2021"
output: html_document
---
## Asking the maths library
pi
## [1] 3.141593
## Buffon’s needle
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
## Using a surface fraction argument
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
4*mean(df$Accept)
--- ---
title: "On the computation of pi" title: "On the computation of pi"
author: "Arnaud Legrand" author: "Lijuan Ren"
date: "25 juin 2018" date: "20 Sept 2021"
output: html_document output: html_document
--- ---
```{r setup, include=FALSE} ## Asking the maths library
knitr::opts_chunk$set(echo = TRUE) pi
``` ## [1] 3.141593
## Asking the maths library
My computer tells me that $\pi$ is *approximatively*
```{r}
pi
```
## Buffon's needle ## Buffon’s needle
Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__
```{r}
set.seed(42) set.seed(42)
N = 100000 N = 100000
x = runif(N) x = runif(N)
theta = pi/2*runif(N) theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
```
## Using a surface fraction argument ## Using a surface fraction argument
A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1] = \pi/4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:
```{r}
set.seed(42) set.seed(42)
N = 1000 N = 1000
df = data.frame(X = runif(N), Y = runif(N)) df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1) df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2) library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
It is then straightforward to obtain a (not really good) approximation to $\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:
```{r}
4*mean(df$Accept) 4*mean(df$Accept)
```
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment