Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__
```{r}
set.seed(42) set.seed(42)
N = 100000 N = 100000
x = runif(N) x = runif(N)
theta = pi/2*runif(N) theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
```
## Using a surface fraction argument ## Using a surface fraction argument
A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1] = \pi/4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:
```{r}
set.seed(42) set.seed(42)
N = 1000 N = 1000
df = data.frame(X = runif(N), Y = runif(N)) df = data.frame(X = runif(N), Y = runif(N))