Update toy_document_fr.Rmd

parent dde9a5cb
...@@ -9,15 +9,15 @@ output: html_document ...@@ -9,15 +9,15 @@ output: html_document
knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(echo = TRUE)
``` ```
# En demandant à la lib maths ## En demandant à la lib maths
Mon ordinateur m’indique que $$pi$$ vaut approximativement Mon ordinateur m’indique que $$\pi$$ vaut **approximativement**
```{r} ```{r}
pi pi
``` ```
# En utilisant la méthode des aiguilles de Buffon ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :
...@@ -29,9 +29,9 @@ theta = pi/2*runif(N) ...@@ -29,9 +29,9 @@ theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1)) 2/(mean(x+sin(theta)>1))
``` ```
# Avec un argument “fréquentiel” de surface ## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $$X∼U(0,1)$$ et $$Y∼U(0,1)$$ alors $$P[X2+Y2≤1]=π/4$$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $$X\sim U(0,1)$$ et $$Y\sim U(0,1)$$ alors $$P[X2+Y2≤1]=\pi/4$$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait:
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -42,7 +42,7 @@ library(ggplot2) ...@@ -42,7 +42,7 @@ library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $$X^2+Y^2$$ est inférieur à 1: Il est alors aisé d’obtenir une approximation (pas terrible) de $$\pi$$ en comptant combien de fois, en moyenne, $$X^2 + Y^2$$ est inférieur à 1 :
```{r} ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
``` ```
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment