"Mon ordinateur m'indique que $\\pi$ vaut *approximativement*"
...
...
@@ -42,6 +46,7 @@
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
...
...
@@ -79,7 +84,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
...
...
@@ -88,7 +96,10 @@
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
...
...
@@ -123,7 +134,10 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :"