Mon ordinateur m’indique que $π$ vaut _approximativement_
Mon ordinateur m’indique que $π$ vaut _approximativement_
```{r}
```{r}
pi
pi
```
```
# En utilisant la méthode des aiguilles de Buffon
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__
```{r}
```{r}
set.seed(42)
set.seed(42)
...
@@ -20,7 +24,7 @@ x = runif(N)
...
@@ -20,7 +24,7 @@ x = runif(N)
theta = pi/2*runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
2/(mean(x+sin(theta)>1))
```
```
# Avec un argument “fréquentiel” de surface
## Avec un argument “fréquentiel” de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X2+Y2≤1]=π/4$ voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait:
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X2+Y2≤1]=π/4$ voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait: